Читаем Feynmann 9 полностью

Добавим теперь второй электрон. Все очень хорошо: электро­нов у нас два — первый можно поставить в нижнее состояние, а второй в верхнее, не так ли? Не совсем,— мы о чем-то забыли. Ведь каждое из со­стояний на самом деле двойное. Когда мы говорим, что допустимо состояние с энер­гией Е0-А, то в действительности там их пара. В одно и тоже состояние могут по­пасть два электрона, один со спином, направленным вверх, другой — вниз (но не больше, из-за прин­ципа запрета). Так что на самом деле имеются два возможных состояния с энергией Е0-А. Можно начертить диаграмму (фиг. 13.7), которая показывает и уровни энергии, и их насе­ленность.

Фиг. 13.7. В добавочной связи молекулы этилена два электрона (один со спином вверх, другой — вниз) могут занять низший уровень энергии.

В состоянии наименьшей энергии оба электрона будут в наинизшем состоянии с противоположными спинами. Энергия «лишней» связи в молекуле этилена поэтому равна 20-А), если пренебречь взаимодействием между двумя электронами. Теперь вернемся к бензолу. У каждого из двух состояний на фиг. 13.3 есть три двойные связи. И каждая из них очень похожа на связь в этилене и дает вклад в энергию 20-А), где теперь Е0уже энергия, необходимая, чтобы поместить электрон в бензоле на нужное место, а А — амплитуда пере­броса его в соседнее место. Значит, энергия должна быть равна примерно 60-А). Но когда мы раньше изучали бензол, то пришли к выводу, что его энергия ниже энергии структуры с тремя двойными связями. Посмотрим, получится ли теперь, с нашей новой точки зрения, энергия бензола ниже, чем у трех двойных связей.

Начинаем с шестикратно ионизо­ванного бензольного кольца. Добавляем один электрон. Теперь у нас система с шестью состояниями. Мы пока еще не решали таких систем, но знаем, что нужно делать. Можно написать шесть уравнений для шести амплитуд и т. д. Но не лучше ли сберечь свои силы, ведь мы уже ре­шили эту задачу, исследуя электрон в бесконечной цепочке атомов. Конечно, бензол — не бесконечная цепочка, шесть мест для атомов в нем расположены по кругу. Но представьте, что мы разняли кольцо в цепь и пронумеровали атомы вдоль цепи числами от 1 до 6. В бесконечной линии следующее место имело бы номер 7, но если мы условимся, что оно совпадает с местом номер 1 и т. д., то все окажется в точности похожим на бензольное кольцо. Иными словами, мы можем взять реше­ние для бесконечной линии с добавочным требованием, чтобы решение было периодичным с периодом длиной в шесть атомов. Согласно гл. 11, электрон на прямой обладает состояниями определенной энергии, когда амплитуда того, что он окажется в некотором месте хn, равна . При каждом k энер­гия равна

E=E0-2Acoskb. (13.25)

Теперь из этих решений нам нужно оставить только такие, которые через каждые 6 атомов повторяются. Разберем сперва общий случай, когда в кольце N атомов. Если решение должно иметь период в N атомных расстояний, то eikbN должна быть равна единице, или kbN должна быть кратна 2p. Если s — любое це­лое число, то наше условие имеет вид

kbN=2ps. (13.26)

Мы раньше видели, что нет смысла брать k вне пределов ±p/b. Это означает, что мы получим все мыслимые состояния, беря значения s в пределах ±N/2.

Стало быть, мы приходим к тому, что у N-атомного кольца имеется N состояний определенной энергии и их волновые числа ks даются числами

ks=2ps/Nb. (13.27)

Каждое состояние имеет энергию (13.25). Получается линейча­тый спектр возможных уровней энергий. Спектр для бензола (N=6) показан на фиг. 13.8, б. (Числа в скобках указывают число различных состояний с одинаковой энергией.)

Есть наглядный способ изобразить эти шесть уровней энер­гии. Он показан на фиг. 13.8, а. Вообразим круг с центром на одном уровне с Е0 и с радиусом 2А. Если мы отложим, начиная снизу, шесть равных дуг (под углами, считая от нижней точки, ksb = 2ps/N, или 2ps/6 для бензола), то высоты точек круга будут решениями (13.25). Шесть точек представляют шесть возможных состояний. Низший уровень энергии придется на Е0-; дальше идут два состояния с одинаковой энергией Е0-А и т. д. Это возможные состояния одного электрона. Если электронов не один, а больше, то в каждое состояние может попасть по два электрона с противоположными спинами.

У молекулы бензола надо здесь разместить шесть электро­нов. Если состояние основное, то они должны попасть в наи­низшие возможные энергетические состояния — пара в s=0, пара в s=+1 и пара в s =-1. Согласно приближению неза­висимых частиц, энергия основного состояния равна

Она действительно оказывается меньше, чем у трех отдельных двойных связей,— на 2А.

Сравнив энергию бензола с энергией этилена, можно опреде­лить А. Эта величина оказывается равной 0,8 эв, или в едини­цах, которые нравятся химикам, 18 ккал/моль.

Этим описанием можно воспользоваться, чтобы вычислить или понять другие свойства бензола. Например, глядя на фиг. 13.8, можно разобраться в возбуждении бензола светом.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука