Теперь ясно, что делать. Для x-представления следует писать
Сумма по базисным состояниям |j> заменяется интегралом по х'. Поскольку <х|Н^|х'> должна быть какой-то функцией от x и х', запишем ее как Н (х, х'), что соответствует Н if в (14.49). Тогда (14.50) это то же самое, что
где
Согласно (14.51), быстрота изменения y в точке х зависела бы от значений y во всех других точках х'; множитель Н(х, х') — это амплитуда (в единицу времени) того, что электрон перепрыгнет из х' в x. Оказывается, однако, что в природе эта амплитуда всюду, кроме точек х' , очень близких к х, равна нулю. Это означает, как мы видели на примере цепочки атомов в начале главы [см. (14.12)], что правая часть (14.51) может быть полностью выражена только через y и ее производные по z в точке х.
Для частицы, которая свободно движется в пространстве, не подвергаясь действию каких-либо сил и возмущений, правильный физический закон таков:
Откуда это получается? Это невозможно вывести из чего-либо нам уже известного. Это рождено в голове Шредингера, это выдумано им в битве за понимание экспериментальных наблюдений реального мира. Может быть, какой-то ключ к тому, почему так должно быть, вам дадут размышления по поводу нашего вывода уравнения (14.12), которое проистекло из рассмотрения распространения электрона в кристалле.
Конечно, от свободных частиц проку мало. Что будет, если к частице приложить силы? Что ж, если действующая на частицу сила может быть описана с помощью скалярного потенциала V(х) (что означает, что речь идет не о магнитных силах, а об электрических) и если мы ограничимся низкими энергиями, чтобы иметь право пренебрегать теми сложностями, которые возникают при релятивистском движении, то гамильтониан, который укладывается в реальный мир, таков:
Опять-таки некоторый ключ к происхождению этого уравнения вы получите, если вернетесь к движению электрона в кристалле и посмотрите, как надо изменить уравнения, если энергия электрона медленно меняется от атома к атому, как если бы к кристаллу было приложено электрическое поле. Тогда член Е0 в (14.7) будет медленно меняться в зависимости от места и будет соответствовать новому слагаемому, появившемуся в (14.52). [Вас может удивить, отчего мы сразу перешли от (14.51) к (14.52), а не дали правильного выражения для амплитуды Н(х, х')=<х|Н^|х'>. Да потому, что Н (х , х') можно написать только с помощью необычных алгебраических функций, а интеграл в правой части (14.51) выражается через привычные вещи. Если вам это в самом деле интересно, то вот смотрите: Н (х, х') можно записать так:
где d'' означает вторую производную 6-функции. Эту довольно странную функцию можно заменить чуть более удобным и полностью ей равнозначным алгебраическим выражением
Мы не будем пользоваться этими формулами, а прямо будем работать с (14.52).]
Если теперь взять выражение (14.52) и подставить в (14.50) вместо интеграла, то для y(х)=<х|y> получится дифференциальное уравнение
Совершенно очевидно, что надлежит поставить вместо (14.53),
если нас интересует трехмерное движение. Надо только d2/dx2
заменить на
а V(х) заменить на V(x, у, z). Для электрона, движущегося в поле с потенциалом V (х, у, z), амплитуда y(х, у, z) удовлетворяет дифференциальному уравнению
Называется оно уравнением Шредингера и было первым известным квантовомеханическим уравнением. Его написал Шредингер, прежде чем было открыто любое другое описанное в этом томе уравнение.