Читаем Feynmann 9 полностью

А вероятность того, что у электрона будет обнаружен импульс р, выразится квадратом абсолютной величины этой амплитуды. Но опять возникает тот же вопрос насчет нормирования. Ведь вообще можно говорить только о вероятности обнаружить электрон с импульсом в узкой области dp близ значения р. Вероятность того, что импульс в точности равен р, равна нулю (разве что состояние |y> окажется состоянием с определенным импульсом). Только вероятность обнаружить импульс в интер­вале dp возле значения р может оказаться конечной. Нормиров­ку можно делать по-разному. Мы выберем тот способ нормиров­ки, который нам кажется особенно удобным, хотя вам сейчас это может так и не показаться.

Примем такую нормировку, чтобы вероятность была связана с амплитудой равенством

Это определение дает нам нормировку амплитуды <имп. р|x>. Амплитуда <имп. р|х>, естественно, комплексно сопряжена с амплитудой <х|имп. р>, а последнюю мы писали в (14.15). При нашей нормировке оказывается, что коэффициент пропор­циональности перед экспонентной как раз равен единице, т. е.

Тогда (14.21) превращается в

Вместе с (14.22) это уравнение позволяет находить распреде­ление импульсов для любого состояния |y>.

Возьмем частный пример: скажем, когда электрон распо­ложен в некоторой области вокруг х=0. Пусть мы взяли вол­новую функцию вида

Распределение вероятности иметь то или иное значение х для такой волновой функции дается ее квадратом

Функция плотности вероятности Р(х)это кривая Гаусса, по­казанная на фиг. 14.1.

фиг. 14.1. Плотность вероятности для волно­вой функции (14.24).

Большая часть вероятности сосредото­чена между х=+s и х=-s. Мы говорим, что «полуширина» кривой есть а. (Точнее, а равняется средней квадратичной координате х, если разброс координат соответствует этому распределению.) Коэффициент К следовало бы выбрать так, чтобы плотность вероятности Р(х) не просто была пропорциональна вероятности (на единицу длины ж) обнаружить электрон, но имела бы такой масштаб, чтобы Р(х)Dx равнялось вероят­ности обнаружить электрон в Dx вблизи х. Коэффициент К, при котором так и получается, можно найти из требования

\ Р (х) dx=1, потому что вероятность обнаружить электрон

где попало равна единице. Мы находим, что К = (2ps2)-1/4.

Теперь найдем распределение по импульсу. Пусть j(p)

есть амплитуда того, что импульс электрона окажется равным р:

Подстановка (14.25) в (14.24) дает

что можно также переписать в форме

Сделаем теперь замену интеграл обратится в

Математикам, вероятно, не понравился бы такой путь расчета, однако итог, несмотря на это, верен:

Мы пришли к интересному результату — распределение амплитуд по р имеет в точности ту же математическую форму, как и распределение амплитуд по х, только ширина кривой Гаусса иная. Можно записать это так:

где полуширина h распределения по р связана с полушириной а распределения по х формулой

Наш результат утверждает: если сделать распределение по х очень узким, взяв s малым, то h станет большим и распре­деление по р сильно расползется. Или наоборот, если распределение по р узко, то оно соответствует широкому распределению по х. Мы можем, если угодно, рассматривать h и s как некую меру неопределенности локализации импульса и коор­динаты электрона в изучаемом нами состоянии. Если обозначить их соответственно Dр и Dx, то (14.33) обратится в

Интересно вот что: можно доказать, что при всяком ином

виде распределения по х или по р произведение DpDx не может

стать меньше, чем у нас получилось. Гауссово распределение

дает наименьшее возможное значение произведения средних

квадратичных. В общем случае

Это количественная формулировка принципа неопределенности Гейзенберга, который качественно нам уже давно известен. Мы обычно делали приближенное утверждение: наименьшее значение произведения DpDx — это число порядка h.

§ 4. Нормировка состояний с определенной координатой х

Теперь мы вернемся к обсуждению тех изменений в наших основных уравнениях, которые необходимо сделать для работы с континуумом базисных состояний. Когда имеется конечное число дискретных состояний, то фундаментальное условие, которому должна удовлетворять система базисных состояний, имеет вид

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука