Читаем Feynmann 9 полностью

Раз мы определили y (х) как амплитуду того, что электрон в состоянии y обнаружится в точке х, то хотелось бы интер­претировать квадрат абсолютной величины y как вероятность обнаружить электрон в точке х. Но, к сожалению, вероятность обнаружить электрон в точности в каждой данной точке равна нулю. Электрон в общем случае размазывается по какому-то участку прямой, и поскольку точек на каждом участке беско­нечно много, то вероятность оказаться в любой из них не может быть конечным числом. Вероятность обнаружить электрон мы можем описать только на языке распределения вероятно­стей, которое дает относительную вероятность обнаружить электрон в различных неточно указанных местах прямой. Пусть Вер. (х, Dх) обозначает вероятность обнаружить электрон в узком интервале Dх: возле точки х. Если мы в каждой физичес­кой ситуации будем пользоваться достаточно мелким масшта­бом, то вероятность будет от точки к точке меняться плавно, и вероятность обнаружить электрон в произвольном конечном маленьком отрезке прямой Dх; будет пропорциональна Dх. И можно так изменить наши определения, чтобы это было учтено. Можно считать, что амплитуда <x|y> представляет своего рода «плотность амплитуд» для всех базисных состояний |х> 1 в узком интервале х. Поскольку вероятность обнаружить

iэлектрон в узком интервале Dх вблизи х должна быть пропор­циональна длине интервала Dх, мы выберем такое определение <х |y>, чтобы соблюдалось следующее условие: Вер. (х, Dх)=| |2Dх. Амплитуда <x|y> поэтому пропорциональна амплитуде того, что электрон в состоянии y будет обнаружен в базисном состоя­нии х, а коэффициент пропорциональности выбран так, что квадрат абсолютной величины амплитуды <x|y> дает плот­ность вероятности обнаружить электрон в любом узком интер­вале. Можно писать и так:

Вер. (x, Dх)=| y (х)|2 Dх. (14.17)

Теперь надо изменить некоторые наши прежние уравнения, чтобы согласовать их с этим новым определением амплитуды вероятности. Пусть имеется электрон в состоянии |y>, а мы хотим знать амплитуду того, что он будет обнаружен в дру­гом состоянии |y>, которое может соответствовать другим условиям размазанности электрона. Когда речь шла о конеч­ной системе дискретных состояний, мы пользовались уравне­нием (14.5). До изменения нашего определения амплитуд мы должны были писать

А теперь если обе эти амплитуды нормированы так, как описано выше, то сумма по всем состояниям из узкого интервала х будет эквивалентна умножению на Dx, а сумма по всем значениям х превратится просто в интеграл. При наших измененных опре­делениях правильная формула будет такой:

Амплитуда <x|y> — это то, что мы теперь называем y (х); точно так же амплитуду <x|y> мы обозначим j(х). Вспоминая, что x> комплексно сопряжена с <x|j>, мы можем (14.18) переписать в виде

При наших новых определениях все формулы останутся преж­ними, если только всюду знак суммы заменить интегрирова­нием по х.

К тому, что было сказано, нужно сделать одну оговорку. Любая подходящая система базисных состояний должна быть полной, если хотят, чтобы она сполна отражала все, что проис­ходит. Для одномерного движения электрона в действитель­ности недостаточно указать только базисные состояния |x>, потому что в каждом из этих состояний спин электрона может быть направлен вверх или вниз. Один из способов получить полную систему — взять две совокупности состояний по х: одну для спина вверх, другую для спина вниз. Мы, впрочем, пока не будем входить в такие подробности.

§ 3. Состояния с определенным импульсом

Пусть у нас имеется электрон в состоянии |y>, описывае­мом амплитудой вероятности |y>=y (х). Мы знаем, что y (х) обозначает состояние, в котором электрон размазан по прямой по какому-то закону, так что вероятность обнаружить его в узком интервале dx близ точки х попросту равна

Вер. (х, dx)=|y (х)|2dx.

Что можно сказать об импульсе этого электрона? Можно спро­сить, какова вероятность того, что импульс этого электрона равен р? Начнем с расчета амплитуды того, что состояние |y> присутствует в другом состоянии | имп. p>, которое мы опреде­лим как состояние с определенным импульсом р. Эту амплитуду можно найти, применяя наше основное уравнение для разло­жения амплитуд (14.20). В терминах состояний |имп. p>

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука