Когда мы обратимся к теме этой главы, вы заметите, что мы нарушаем правило, которому в прошлом неизменно следовали. Какой бы темы мы ни касались, мы всегда пытались более или менее полно представить вам физику дела, указывая как можно полнее, куда ведут эти идеи. Мы стремились наряду с описанием общих следствий теории представить и некоторые характерные детали, чтобы вам было ясно, куда ведет эта теория. А теперь нам придется нарушить это правило. Мы расскажем об амплитудах вероятности пребывания электрона где-то в пространстве и продемонстрируем вам дифференциальные уравнения, которым они удовлетворяют. Но у нас не будет времени углубиться и обсудить многие очевидные выводы, следующие из теории.
Более того, нам даже не удастся связать эту теорию с некоторыми приближенными формулировками, к которым мы раньше прибегали, скажем, когда изучали молекулу водорода или молекулу аммиака. На этот раз придется бросить дело на полпути, не окончив его. Курс наш близится к концу, и хочешь не хочешь, придется обойтись одним только введением в общие представления. Мы укажем связь с тем, о чем говорилось раньше, и, кроме того, некоторые другие подходы к задачам квантовой механики. Надеемся, что этих представлений вам хватит, чтобы потом двинуться самостоятельно и уже по книгам узнать многие выводы из приведенных здесь уравнений. Все-таки нужно оставить кое-что и на будущее.
Вспомним еще раз, что нам известно о том, как электрон может продвигаться вдоль линии атомов. Когда электрон может с какой-то амплитудой перепрыгивать от одного атома к соседнему, то имеются состояния определенной энергии, в которых амплитуда вероятности обнаружить электрон распределяется вдоль решетки в виде бегущей волны. Для длинных волн (малых значений волнового числа
(см. гл. 11, § 1). Мы видели также, что группы таких волн с близкими энергиями образуют волновой пакет, который ведет себя как классическая частица с массой mэфф:
Раз волны амплитуды вероятности в кристалле ведут себя как частицы, то естественно ожидать, что общее квантовомеханическое описание частицы выявит такое же волновое поведение, какое мы наблюдали в решетке. Предположим, мы взяли одномерную решетку и вообразили, что постоянная решетки
Начнем с того, что напомним некоторые общие принципы квантовой механики. Пусть имеется частица, которая может в квантовомеханической системе существовать в разных условиях. Любые заданные условия, в которых может быть обнаружен электрон, мы называем «состоянием» и отмечаем их при помощи вектора состояния, скажем |j>. В каких-то других условиях и метка будет другая, скажем вектор состояния |y>. Затем мы вводим идею о базисных состояниях. Мы говорим, что имеется совокупность состояний | 1 >, | 2>, | 3>, | 4> и т. д., обладающая следующими свойствами. Во-первых, все эти состояния совершенно различны — мы говорим, что они ортогональны. Под этим мы понимаем, что для любой пары базисных состояний |
так:
<
Вспомните, что dij=0, если
Далее, базисные состояния |
Наконец, если рассмотреть любые два состояния |j> и |y>, то амплитуду того, что состояние |y>