Читаем Feynmann 9 полностью

Чтобы получить некоторое представление о том, как теперь все будет выглядеть, вернемся к самому началу и изучим проб­лему описания движения электрона по прямой, не рассматривая состояний, связанных с атомами решетки. Мы хотим возвратить­ся к самому началу и посмотреть, какими представлениями нужно пользоваться, чтобы описать движение свободной части­цы в пространстве. Раз нас интересует поведение частицы вдоль континуума точек, то придется иметь дело с бесконечным мно­жеством возможных состояний и, как вы увидите, идеи, которые были развиты для конечного числа состояний, потребуют неко­торых технических видоизменений.

Начнем с того, что вектором состояния |х> обозначим со­стояние, в котором частица расположена в точности в точке с координатой х. Для каждого значения х вдоль прямой — для 1,73, для 9,67, для 10,00 и т. д.— имеется соответствующее состояние. Выберем эти состояния |х> в качестве базисных. Если это сделать для всех точек х прямой, то получится полная совокупность состояний для движения в одном измерении. Теперь положим, что имеется состояние другого рода, скажем |y>, в котором электрон как-то распределен вдоль прямой. Один из способов описать это состояние — задать все амплиту­ды того, что электрон будет также найден в каждом из базисных состояний |x>. Надо задать бесконечную совокупность ампли­туд, по одной для каждого х. Запишем их в виде <x|y>. Каж­дая из этих амплитуд — комплексное число, и поскольку для каждого значения х существует одно такое число, амплитуда <x|y> является в действительности просто функцией х. Запи­шем ее также в виде С (х):

Мы уже рассматривали такие амплитуды, которые непрерыв­ным образом меняются с координатами, говоря в гл. 5 (вып. 8) об изменениях амплитуд во времени. Мы, например, показали там, что следует ожидать, что частица с определенным импуль­сом будет обладать особым типом изменения своей амплитуды во времени. Если частица имеет определенный импульс р и соответствующую ему определенную энергию Е, то амплитуда того, что она будет обнаружена в любом заданном месте x, такова:

<x|y> = С (x) ~e+ipx/h. (14.15)

Это уравнение выражает важный общий принцип квантовой механики, который связывает базисные состояния, соответст­вующие различным положениям в пространстве, с другой системой базисных состояний — со всеми состояниями опреде­ленного импульса. В некоторых задачах состояния определен­ного импульса удобнее, чем состояния с определенным х. И лю­бая другая система базисных состояний также годится для опи­сания квантовомеханической ситуации. К связи между ними мы еще вернемся. А сейчас мы по-прежнему будем придерживаться описания на языке состояний |х>.

Прежде чем продолжать, прибегнем к небольшой замене обозначений, которая, надеемся, вас не слишком смутит. Форма функции С (х), определенной уравнением (14.14), естественно, будет зависеть от рассматриваемого состояния |y>. Это нужно как-то отметить. Можно, например, указать, о какой функции С (х) идет речь, поставив снизу индекс, скажем Сy(х). Хотя такое обозначение вполне подошло бы, но оно все же чуточку громоздко и в большинстве книг вы его не встретите. Обычно просто убирают букву С и пользуются символом y для опреде­ления функции

Поскольку это обозначение принято во всем мире, неплохо было бы и вам привыкнуть к нему и не пугаться, встретив его где-нибудь. Надо только помнить, что y теперь будет использоваться двояким образом. В (14.14) y обозначает метку, которой мы отметили заданное физическое состояние электрона. А в (14.16) слева символ y применяется для определения математической функции от х, равной амплитуде, связываемой с каждой точкой х прямой. Надеемся, что это не слишком смутит вас, когда вы привыкнете к самой идее. Кстати, функцию y (х) обычно именуют «волновой функцией», потому что она очень часто имеет форму комплексной волны своих переменных.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука