Читаем Feynmann 9 полностью

Чтобы получить некоторое представление о том, как теперь все будет выглядеть, вернемся к самому началу и изучим проб­лему описания движения электрона по прямой, не рассматривая состояний, связанных с атомами решетки. Мы хотим возвратить­ся к самому началу и посмотреть, какими представлениями нужно пользоваться, чтобы описать движение свободной части­цы в пространстве. Раз нас интересует поведение частицы вдоль континуума точек, то придется иметь дело с бесконечным мно­жеством возможных состояний и, как вы увидите, идеи, которые были развиты для конечного числа состояний, потребуют неко­торых технических видоизменений.

Начнем с того, что вектором состояния |х> обозначим со­стояние, в котором частица расположена в точности в точке с координатой х. Для каждого значения х вдоль прямой — для 1,73, для 9,67, для 10,00 и т. д.— имеется соответствующее состояние. Выберем эти состояния |х> в качестве базисных. Если это сделать для всех точек х прямой, то получится полная совокупность состояний для движения в одном измерении. Теперь положим, что имеется состояние другого рода, скажем |y>, в котором электрон как-то распределен вдоль прямой. Один из способов описать это состояние — задать все амплиту­ды того, что электрон будет также найден в каждом из базисных состояний |x>. Надо задать бесконечную совокупность ампли­туд, по одной для каждого х. Запишем их в виде <x|y>. Каж­дая из этих амплитуд — комплексное число, и поскольку для каждого значения х существует одно такое число, амплитуда <x|y> является в действительности просто функцией х. Запи­шем ее также в виде С (х):

Мы уже рассматривали такие амплитуды, которые непрерыв­ным образом меняются с координатами, говоря в гл. 5 (вып. 8) об изменениях амплитуд во времени. Мы, например, показали там, что следует ожидать, что частица с определенным импуль­сом будет обладать особым типом изменения своей амплитуды во времени. Если частица имеет определенный импульс р и соответствующую ему определенную энергию Е, то амплитуда того, что она будет обнаружена в любом заданном месте x, такова:

<x|y> = С (x) ~e+ipx/h. (14.15)

Это уравнение выражает важный общий принцип квантовой механики, который связывает базисные состояния, соответст­вующие различным положениям в пространстве, с другой системой базисных состояний — со всеми состояниями опреде­ленного импульса. В некоторых задачах состояния определен­ного импульса удобнее, чем состояния с определенным х. И лю­бая другая система базисных состояний также годится для опи­сания квантовомеханической ситуации. К связи между ними мы еще вернемся. А сейчас мы по-прежнему будем придерживаться описания на языке состояний |х>.

Прежде чем продолжать, прибегнем к небольшой замене обозначений, которая, надеемся, вас не слишком смутит. Форма функции С (х), определенной уравнением (14.14), естественно, будет зависеть от рассматриваемого состояния |y>. Это нужно как-то отметить. Можно, например, указать, о какой функции С (х) идет речь, поставив снизу индекс, скажем Сy(х). Хотя такое обозначение вполне подошло бы, но оно все же чуточку громоздко и в большинстве книг вы его не встретите. Обычно просто убирают букву С и пользуются символом y для опреде­ления функции

Поскольку это обозначение принято во всем мире, неплохо было бы и вам привыкнуть к нему и не пугаться, встретив его где-нибудь. Надо только помнить, что y теперь будет использоваться двояким образом. В (14.14) y обозначает метку, которой мы отметили заданное физическое состояние электрона. А в (14.16) слева символ y применяется для определения математической функции от х, равной амплитуде, связываемой с каждой точкой х прямой. Надеемся, что это не слишком смутит вас, когда вы привыкнете к самой идее. Кстати, функцию y (х) обычно именуют «волновой функцией», потому что она очень часто имеет форму комплексной волны своих переменных.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука