Здесь отметим интересную вещь. Формулы (16.17) и (16.18) точно соответствуют классической теории рассеяния света, которую мы излагали в гл. 32, § 5 (вып. 3), считая, что электрон связан с атомом линейной возвращающей силой, что действует он как классический осциллятор. Вы можете подумать: «А в классической теории все было куда проще; если она дает верный ответ, зачем забивать себе голову квантовой теорией?» Во-первых, мы пока рассмотрели только один частный (хотя и частый) случай атома с возбужденным состоянием
Вообще все имеющие сегодня хождение классические теории должны быть в конечном счете подтверждены единственно правильными квантовыми аргументами. Естественно, что все те вещи, на объяснения которых мы потратили прежде столько времени, были отобраны как раз из тех частей классической физики, которые еще подтверждаются квантовой механикой. Заметьте, что мы не обсуждали во всех деталях такие модели атома, в которых электроны двигались вокруг ядра по орбитам. Это потому, что такая модель не дает результатов, согласуемых с квантовой механикой. Но электрон на пружинке (хоть эта картина ничуть не смахивает на настоящий атом) действительно с ней согласуется, и потому мы применяли эту модель в теории показателя преломления.
§ 3. Аннигиляция позитрония
Теперь хотелось бы рассмотреть еще один очень интересный пример. Он очень привлекателен, хотя и немного сложен, но, надеемся, все же не слишком. Пример этот — система, именуемая
Но самое важное различие в том, что позитроний не может существовать вечно. Позитрон — это античастица электрона; они могут взаимно друг друга уничтожить. Две частицы полностью исчезают, обращая свою энергию покоя в излучение в виде g-квантов (фотонов). Две частицы с конечной массой покоя переходят в пару (а то и больше) объектов с нулевой массой покоя.
Начнем с анализа распада состояния позитрония со спином нуль. Он распадается на два g-кванта со временем жизни 10-10
Импульсы обязаны быть равны и противоположны, потому что полный импульс после распада должен быть таким, как и до распада, т. е. равен нулю (если мы рассматриваем аннигиляцию в покое). Если позитроний движется, мы можем нагнать его, решить задачу и затем все преобразовать обратно в лабораторную систему (вот видите — мы теперь все умеем; все, что надо, у нас под рукой).
Для начала заметим, что угловое распределение интереса не представляет. Раз спин начального состояния равен нулю, то нет какой-либо выделенной оси, оно симметрично относительно любых поворотов. Значит, и конечное состояние должно быть симметрично относительно всякого поворота. Это означает, что все углы распада одинаково вероятны — амплитуда вылететь в любую сторону для фотона одна и та же. Конечно, если