Синтез ядер гелия из ядер дейтерия становится интенсивным при температуре в несколько миллионов градусов, а чтобы этот синтез давал практически существенные количества энергии, требуются температуры в несколько сотен миллионов градусов. При таких температурах любое вещество становится плазмой, т. е. смесью атомов, потерявших свои электронные оболочки и оторвавшихся от атомов электронов. Когда температура достигает нескольких тысяч градусов, уже начинается отрыв электронов с внешних атомных оболочек. Эти электроны уравновешивают в нейтральном атоме положительный заряд ядра. Когда они отрываются, атом становится ионом, ионизируется. По мере дальнейшего повышения температуры доля ионов и электронов все возрастает, а доля нейтральных атомов уменьшается. При температуре в 20–30 тыс. градусов в плазме уже почти не остается нейтральных атомов. После этого дальнейшее повышение температуры срывает с атомов все более глубокие и тесно связанные с ядром электронные оболочки. Атомы тяжелых элементов, включающие десятки и даже сотню электронов, полностью ионизируются, когда температура достигает миллионов и десятков миллионов градусов.
Термоядерные реакции происходят в плазме. Например, в звездах, которые представляют собой плазменные образования. Но, когда речь идет о лабораторных или промышленных установках, плазма, по-видимому, должна быть заключена в сосуд. Здесь-то и возникает кардинальное затруднение. В свое время в средневековой Европе велся схоластический спор о неком всерастворяющем веществе. Где хранить это вещество? Ведь оно растворит любой сосуд. Несколько аналогичный, хотя вовсе не схоластический, вопрос возникает, когда речь идет о плазме. Любой содержащий плазму сосуд испарится и, более того, сам превратится в смесь ионизированных атомов и электронов. Путь к преодолению такого затруднения состоит в следующем. Если силовые линии магнитного поля окружают плазму со всех сторон, она, находясь в вакууме, не будет распространяться, не приблизится к стенкам сосуда и сосредоточится в ограниченном пространстве, окруженная пустотой. При прохождении тока через плазму, содержащуюся в вакуумной трубке, магнитное поле тока удерживает плазму, не дает ей коснуться стенок трубки, и в трубке образуется тонкий плазменный шнур. Можно создать термоизоляцию плазмы с помощью внешних магнитных полей, не связанных с током, проходящим через плазму. Беда в том, что плазменный шнур, о котором идет речь, неустойчив, он деформируется и в течение миллионных долей секунды меняет свою форму, касаясь стенок трубки. Неустойчивым оказывается и плазменный сгусток в ловушке, созданной внешними магнитными полями.
Заставить плазму, сконцентрированную и сжатую магнитными полями, сохраниться в таком состоянии хотя бы доли секунды — в этом и состоит основная задача на пути к термоядерной энергетике. Пока удалось удержать лишь очень разреженную плазму с температурой в десятки миллионов градусов в магнитной ловушке в течение сотой доли секунды. Подобный результат имеет принципиальное значение. Он делает весьма вероятной реализацию схемы термоядерных реакций в течение ближайших десятилетий. Если нельзя проектировать на конец XX столетия преобразование энергетического баланса на основе термоядерной энергетики, то можно высказать подобный прогноз для первой половины XXI в. Такой прогноз не влияет на выбор путей технической политики в наши дни, но он влияет на выбор путей научного эксперимента. На этом следует остановиться.
Результат эксперимента в общем случае не известен исследователю. Если бы он был известен с достоверностью (можно сказать: с вероятностью, равной единице), то не было бы нужды производить эксперимент. В этом смысле был прав А. Байков, когда на вопрос об ожидаемых результатах эксперимента ответил: «В науке имеют ценность только неожиданные результаты». С другой стороны, если некоторый результат заведомо не может быть получен, т. е. вероятность его равна нулю, эксперимент также теряет смысл: такая, равная нулю вероятность эквивалентна достоверному отрицательному ответу.
Направление сил и средств в экспериментальной работе определяется вероятностью некоторого результата и вероятным эффектом последнего. Но не только этим. Существует независимое от результата «резонансное воздействие» самого эксперимента, каким бы ни был его результат. В зависимости от оригинальности методов исследования, от эйнштейновского «внутреннего совершенства», от проверяемых в экспериментах исходных концепций, от общности подлежащей решению проблемы, эксперимент может оказать более или менее существенное воздействие на смежные и более отдаленные области исследования и практики. Такое воздействие можно иллюстрировать на примере классической энергетики и ее эволюции в предстоящие десятилетия.