Рп(‘.смотрим научно-технические тенденции, которые заставляют несколько развить и уточнить ранее сформулированную характеристику второй половины XX в. Атомная энергетика теснейшим образом связана с теорией относительности и сама по себе может дать основание назвать новую, вырастающую на наших глазах цивилизацию релятивистской цивилизацией. Другое фундаментальное направление современной научной мысли — квантовая физика — также связана с атомной энергетикой. Процессы, приводящие к делению и синтезу ядер, могут быть поняты лишь с помощью квантовых представлений. Столь же тесная и, может быть, еще более явная связь соединяет квантовую физику с резонансами атомной энергетики. Квантовая электроника является определяющей линией перестройки промышленной технологии и связи в прогнозе на 2000 г. Как уже говорилось, эта условная дата означает существование некоторого комплекса связанных друг с другом научных, экономических и культурных проектировок. Для энергетики такая проектировка состоит в превращении атомных станций в основную составляющую энергетического баланса. Для промышленной технологии и связи общий приуроченный к 2000 г. комплекс исходит из превращения электроники в основную базу преобразования этих отраслей. Подобный прогноз опирается не только на тенденции теоретической физики. Он опирается и на возможности физического эксперимента, которые появятся в 70—80-е годы.
С этой стороны мы и подойдем к квантовой электронике.
После того как Максвелл отождествил свет с электромагнитными колебаниями, были открыты различные по частоте излучения. Излучения с наименьшей частотой применяются для передачи радиосигналов. Гораздо большей частотой (и соответственно меньшей длиной волны) отличаются тепловые, инфракрасные лучи, еще большей частотой — видимые лучи, свет в более узком смысле, занимающий диапазон от наибольшей частоты фиолетовых лучей до наименьшей в видимой части спектра частоты красных лучей. Излучение еще большей частоты, чем фиолетовый свет, уже не воспринимается глазом. Оно называется ультрафиолетовым излучением. Еще короче волны и еще больше частота рентгеновского излучения. Наиболее высокочастотное электромагнитное излучение — это гамма-лучи, испускаемые, в частности, ядрами атомов при некоторых ядерных реакциях.
В 1900 г. Планк открыл, что вещество излучает электромагнитные волны дискретными минимальными порциями. Энергия излучения не может возрастать сколь угодно малыми приращениями, она всегда является кратной минимальным порциям, которые получили название квантов. Но Планк вовсе не думал, что электромагнитное поле состоит из отдельных частиц, он предположил только, что это поле излучается наименьшими, далее неделимыми порциями — квантами и такими же квантами электромагнитные волны поглощаются. Отсюда еще не следует, что само электромагнитное поле состоит из неделимых частиц. Как писал Филипп Франк: «Если пиво всегда продают в бутылках, содержащих пинту, отсюда вовсе не следует, что пиво в бочонке состоит из неделимых частей, равных пинте»!. Весьма парадоксальное предположение о дискретности самого электромагнитного поля было высказано в 1905 г. Эйнштейном. В сущности, уже в этом предположении содержалась, как в зародыше, наиболее парадоксальная идея неклассической физики: свет, который является волнами континуальной среды (это доказывается интерференцией, исчезновением света там, где гребни волн одного луча совпадают с провалами другого луча, и усилением света там, где гребни одного луча совпадают с гребнями другого), вместе с тем оказывается множеством дискретных частиц. Эти частицы Эйнштейн назвал квантами света, а впоследствии они получили название фотонов. Если перейти от корпускулярной картины фотонов к континуальной картине электромагнитных колебаний, то энергия фотона соответствует частоте колебаний, она пропорциональна частоте.
Вскоре квантовая теория света пересеклась в своем развитии с теорией атома. В 1915 г. Бор создал модель атома, в котором вокруг ядра обращаются электроны, при переходе которых с одной орбиты на другую атом излучает электромагнитные волны той или иной частоты, иначе говоря, фотоны той или иной энергии. [49]
Ближайшей к ядру орбите соответствует наименьшая энергия, более отдаленным орбитам соответствуют еще большие энергии. Когда атом поглощает свет (имеется в виду не только видимый свет, но и электромагнитное излучение других типов), электроны переходят на орбиты с большей энергией, энергия атома возрастает за счет поглощенных фотонов. Когда атом излучает фотоны, электроны переходят на орбиты с меньшей энергией, энергия атома уменьшается. По энергии излучения, иначе говоря, по его частоте можно судить о том, что происходит в атоме. Частоты излучения образуют спектр излучения.