Читаем Философия запаха. О чем нос рассказывает мозгу полностью

Во-первых, кодирующее пространство обонятельной системы достаточно объемное. В предыдущих главах мы говорили о том, что химический стимул 1) сначала разбивается на части за счет комбинаторного кодирования на уровне рецепторов (см. глава 6), а затем 2) дополнительно изменяется («декоррелируется») в процессах ингибирования/активации в микросетях луковицы (см. глава 7). Декорреляция – это временной процесс, протекающий за счет локальной обработки сигналов молекулярными механизмами вставочных нейронов. Каждый декоррелированный обонятельный сигнал характеризует временную картину активации, на основе которой происходит его объединение с другими сигналами в сходных, синхронных состояниях (вскоре мы поговорим о клеточных механизмах этих процессов). Таким образом, пространственно-временная активность луковицы должна рассматриваться как отражение динамики кодирующего пространства, а не фиксированного представления запахов, поскольку запахам могут соответствовать разные значения и, следовательно, картины активности.

Во-вторых, декоррелированные сигналы далее широко распределяются и становятся разреженными в обонятельной коре. Такое широкое распределение позволяет обонятельным сигналам интегрироваться и синхронизироваться с параллельными процессами в соседних участках коры (для временной корреляции с вербальными сигналами и сигналами в других модальностях). Разреженное кодирование в этом контексте ослабляет перекрывание сложных нейронных картин многомерных стимулов. В частности, рассредоточенные картины активности способствуют быстрому временному формированию многослойных ассоциаций специфических обонятельных сигналов с разным значением и разным обусловленным поведенческим ответом (как у кроликов Фримана). Если бы сигналы на уровне нейронов были слишком детализированы, было бы очень сложно связывать их с другими сигналами и воспроизводить в будущем. Рассредоточенные сигналы менее детализированы, но быстрее обрабатываются и распознаются (эта идея напоминает о пределе Лэйнга: анализ сложных обонятельных образов в качестве «гештальтов» ограничен по количеству компонентов; см. главы 6 и 9).

Ключ к динамическим вычислениям обонятельных образов – во временном, а не топографическом подходе к обработке сигнала. В таком случае правильнее сравнить процесс осмысления мозгом изменяющихся фрагментов информации с измерением, а не с проецированием на карту. Концепция измерения заставляет также изменить представление об отображении стимула. Мозг выдает не фиксированные изображения предметов (картинка X для запаха X), а динамически закодированные картины, связывающие входящую информацию с другими ответами (картинка X сформировалась для обозначения перцептивного ответа в состоянии X).

Какая структурная организация нейронов и какие клеточные механизмы позволяют обонятельному мозгу получать сигнал и обрабатывать в таком ключе, чтобы отбирать, измерять, отражать и представлять на карте изменчивый состав химического окружения? Ответ появляется при анализе обширных связей луковицы и обонятельной коры с соседними отделами коры. Обонятельная кора состоит из нескольких отделов. Многочисленные митральные клетки связывают луковицу с грушевидной корой – самым крупным отделом первичной обонятельной коры. Ее архитектура способствует широкому распределению обонятельных сигналов.

«Энигма»

Анализ обонятельной коры можно сравнить с прогулкой по широко распределенной сети комбинаторной активности нейронов. «Как называлась машина, которую использовали немцы? – смеется Экри. – “Энигма”[346]! Вы загружаете в “Энигму” входные данные. Информация здесь, но она не искажена процессом ввода. На основании структуры входных данных вы не можете сказать, что это за информация, и на основании выходных – тоже. Вот почему “Энигма” была мощным кодирующим устройством, но должен был существовать механизм для ее раскодирования. – Экри выглядит взволнованным. – В каком-то смысле связь между обонятельной луковицей и грушевидной корой – это “Энигма”». Код «Энигмы» был раскрыт не через описание выходных данных и не через код для каждого сообщения. Не было явного соответствия между входными и выходными данными. Для разгадки «Энигмы» нужно было раскрыть заложенные в нее принципы шифрования. То же самое можно сказать об обонятельном мозге и о том, как он транслирует молекулярную информацию в ментальные образы.

Грушевидная кора – активный информационный узел с широкой сетью выходных сигналов. Она посылает сигналы к соседним отделам коры с разными чувствительными и познавательными функциями, включая гиппокамп (память), амигдалу (распознавание, первичные эмоции, избегание), обонятельный бугорок (перекрестная модальность, слуховые ассоциации), орбитофронтальную кору (принятие решений), энторинальную кору (ориентирование и восприятие времени), периренальную кору (интеграция сигналов с перекрестной модальностью) и другие. Грушевидная кора не просто посылает сигналы в эти отделы, она получает в ответ сигналы обратной связи.

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука