Читаем Философия запаха. О чем нос рассказывает мозгу полностью

Последствия комбинаторного кодирования в передаче сигнала и картине активации нейронов двоякие. Во-первых, сигнал недоопределенный[282] из-за пересечений и наложений. Несколько одорантов взаимодействуют с одним рецептором, и наоборот[283]. Кроме того, рецептор может активироваться под действием разных элементов молекулы. Следовательно, активность рецептора не отражает специфические свойства или микроструктуру молекулы стимула. Во-вторых, еще большая неоднозначность сигнала вызвана неодинаковыми предпочтениями рецепторов при связывании. Мало того что существуют рецепторные коды для разных типов химических признаков, в сочетаниях они имеют разные диапазоны настройки. Рецепторы каждого типа реагируют на определенный набор свойств. Некоторые рецепторы настроены взаимодействовать со множеством одорантов и молекул с разными свойствами. Другие обладают высокой специфичностью и реагируют на меньшее число свойств. Чтобы разобраться, какую информацию и в каком диапазоне передает рецептор, нужно понимать его поведение.

На уровне рецепторов внешний сигнал полностью зашифрован. Скажем, рецептор типа R1 распознает специфическую функциональную группу одоранта, а рецептор типа R2 распознает только линейные структуры с углеродной цепью определенной длины (например, от четырех до шести атомов углерода). На этом уровне информационное содержимое обонятельного стимула расщепляется в поле рецепторов на несколько фрагментов. Вся эта активность рецепторов смешана в едином пространстве.

Комбинаторное кодирование имеет большое значение для кодирования смесей. Это значит, что в естественных условиях одоранты в разных сочетаниях могут перекрываться в рецепторах, которые активируют. Это важно учитывать, когда вы анализируете восприятие смесей. Фаерштейн объясняет: «Вы добавляете смесь [подвергаете ткань воздействию смеси стимулов] и видите, что активируется целый ряд клеток. Затем вы наносите каждый запах отдельно и смотрите, какие клетки активируются. Конечно, если вы сравниваете суммарное количество клеток, реагирующих на отдельные запахи, с количеством клеток, реагирующих на смесь, последнее будет меньше». Фаерштейн предупреждает об ограниченности применения мономолекулярных стимулов. «Обычно мы используем мономолекулярные. Разъедините клетки [отделите их от стенок посуды и выделите из клеточных скоплений], подействуйте запахом и смотрите, что активируется. Добавьте другой запах, и вы увидите иную картину. Но это очень неестественно, поскольку все запахи в мире, которые мы ощущаем, представляют собой смесь до нескольких сотен веществ».

Общая теория кодирования запаха должна строиться на принципах восприятия смесей. Дело в том, что содержащаяся в стимуле информация на уровне рецепторов уже не связана с отдельными молекулами запаха как дискретными внешними объектами. Активация клеток эпителия проявляется в виде пространственной картины. Эти картины активации распределены случайным образом и перекрываются. В результате мы имеем поле, соответствующее сочетанию признаков, причем активность, вызванная одним стимулом (одорантом О1), по топологии неотделима от активности, вызванной другими стимулами (скажем, одорантами О2 и О3), действовавшими одновременно с О1. Информация дистальных стимулов зашифрована в едином пространстве, так что интерпретация обонятельных сигналов зависит от механизмов действия сенсорной системы, а не от внешней конфигурации стимулов.

В итоге мозг не может идентифицировать отдельные компоненты смеси по суммарной картине активации рецепторов. Представьте себе картину активации рецепторов R1-R2-R3-R4. В принципе, за счет комбинаторного перекрывания этот рисунок может быть вызван разными наборами молекул. На рис. 6.2 показано, как это могло бы выглядеть. Действительно, при распознавании смесей рецепторы не в состоянии однозначно идентифицировать отдельные компоненты.


РИС. 6.2. Гипотетический пример комбинаторного кодирования запахов на уровне рецепторов. Картины активации рецепторов (R) под действием смеси одорантов О1 и О2 и смеси одорантов О1 и О3 перекрываются. Аналогичным образом перекрываются картины воздействия смесей, состоящих из одорантов О2 и О3 и одорантов О1 и О4. Источник: © Ann-Sophie Barwich.


Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука