Читаем Физическая подготовка квалифицированных дзюдоистов к главному соревнованию года полностью

Количество кислорода, потребляемого легкими, прямо пропорционально количеству кислорода, используемому в процессах окислительного фосфорилирования. Это позволяет определять величину аэробного энергообразования по поступлению кислорода. Нормализация частоты дыхания и ЧСС происходит только после удовлетворения повышенных потребностей клеток в АТФ.

При потреблении одинакового количества кислорода объем выполненной работы станет бо льшим в том случае, если энергетическим субстратом будут углеводы, а не жиры. Углеводы являются более эффективным «топливом» по сравнению с жирами, так как на их окисление требуется на 12 % меньше кислорода в расчете на молекулу синтезированной АТФ. Поэтому в условиях недостаточного количества кислорода при физических нагрузках энергообразование происходит в первую очередь за счет окисления углеводов. Поскольку запасы углеводов в организме ограничены, ограничена и возможность их использования в видах спорта, требующих проявления общей выносливости. После исчерпания запасов углеводов к энергообеспечению работы подключаются жиры, запасы которых позволяют выполнить очень длительную работу. Учитывая, что жирные кислоты содержат большое количество энергии, весьма важно развивать способность организма спортсмена к более ранней их мобилизации для энергообеспечения работы. Для этого рекомендуется периодически применять в тренировке аэробные нагрузки. В качестве продукта окисления могут использоваться и белки, которые распадаются на аминокислоты, способные превращаться в глюкозу или другие метаболиты аэробного процесса окисления. Однако вклад белков в образование энергии при мышечной деятельности составляет всего 5-10 %.

Мощность аэробного энергообразования оценивается по величине максимального потребления кислорода (МПК), достигнутого при выполнении мышечной работы. У спортсменов эта величина составляет в среднем 5,5–6 л/ мин, а у не занимающихся спортом – 2,5–3,5 л/мин. Поскольку она отражает скорость потребления кислорода в работающих мышцах, а на скелетные мышцы приходится большая часть активной массы тела, то в целях сравнения аэробных способностей разных людей величину МПК обычно выражают в расчете на 1 кг массы тела. У молодых людей, не занимающихся спортом, МПК составляет 40–45 мл/кг/мин, у спортсменов в видах спорта на выносливость – 80–90 мл/кг/мин.

Максимальная мощность аэробного процесса достигается на 2-3-й минутах неинтенсивной работы и может поддерживаться до 15-30-й минуты. В более длительных упражнениях она постепенно уменьшается.

Наиболее интенсивно протекают процессы аэробного энергообразования в медленносокращающихся мышечных волокнах. Следовательно, чем выше процентное содержание таких волокон в мышцах, несущих основную нагрузку при выполнении упражнения, тем больше максимальная аэробная мощность у спортсменов и тем выше физическая работоспособность при продолжительной работе.

Метаболическая емкость аэробного механизма практически безгранична, поскольку имеются большие запасы энергетических источников, дающих большое количество образования АТФ. Так, при окислении 1 молекулы глюкозы в аэробных условиях образуется 38 молекул АТФ, тогда как в анаэробных – только 2 АТФ, а при окислении высших жирных кислот образуется еще больше энергии – 130 АТФ.

Эффективность энергообразования этого механизма также высокая и составляет около 50 %. Определяется она по порогу анаэробного обмена (ПАНО): у нетренированных людей ПАНО наступает при потреблении кислорода примерно 50 % от уровня максимального потребления кислорода, а у высокотренированных в видах спорта на выносливость – при 80–90 % МПК. Увеличение показателя ПАНО под влиянием специальной тренировки связано с повышением (адаптацией) возможностей кислород-транспортной системы, а также ферментативных, регуляторных и других систем.

Таким образом, в многоступенчатой дыхательной цепи наиболее эффективный процесс синтеза АТФ происходит при участии кислорода. Кислород способен окислять многие органические соединения и при этом выделять большое количество энергии в той мере, в какой это нужно организму, и улучшать физическую работоспособность спортсменов.

После окончания работы в мышцах начинаются восстановительные процессы. Восполняются до исходного уровня запасы АТФ, КрФ и гликогена. Удаляются продукты обмена (углекислый газ, вода, аммиак и т. д.). Идет подготовка к новой работе. Чтобы израсходовать в мышцах 1 г углеводов нужно 0,8 л кислорода, 1 г белков – 0,95 л, 1 г жиров – 2 л.

Не отрицая важности всех функциональных систем организма при увеличении аэробного компонента выносливости, следует сказать, что основная принадлежит кислородотранспортной.

Кислородтранспортная система организма спортсменов

Перейти на страницу:

Похожие книги

Психология профессиональной пригодности
Психология профессиональной пригодности

Учебное пособие содержит материалы экспериментально-теоретического изучения психологических аспектов проблемы профессиональной пригодности человека. Излагаются сущность понятия и принципы создания системы диагностики и прогнозирования профессиональной пригодности, история развития исследований в данной области. Обосновываются теоретико-методологические положения по основным вопросам проблемы. Анализируются методические приемы создания и реализации мероприятий по определению профессиональной пригодности. Рассматриваются результаты экспериментальных исследований и рекомендации автора по некоторым научно-практическим направлениям формирования и определения профессиональной пригодности.Книга предназначена для специалистов в области психологии и физиологии труда, инженерной психологии, эргономики, студентов-психологов, а также для преподавателей кафедр психологии и студентов непсихологических вузов.2-е издание.

Вячеслав Алексеевич Бодров

Учебники и пособия ВУЗов