Читаем Физическая подготовка квалифицированных дзюдоистов к главному соревнованию года полностью

В митохондриях кислород вступает в многоступенчатую реакцию с различными питательными веществами – белками, углеводами, жирами и др. Этот процесс называется клеточным дыханием. В результате выделяется химическая энергия, которую клетка запасает в особом веществе – аденозинтрифосфорной кислоте (АТФ).

Кислородный этап дыхания. Продукты расщепления глюкозы попадают в митохондрию. Там от них сначала отщепляется молекула двуокиси углерода, который выводится из организма при выдохе. Остальное окисление происходит в последовательной цепи реакций, так называемом цикле Кребса, где синтезируются дополнительные молекулы АТФ.

Жиры тоже участвуют в этой цепочке, но их расщепление требует времени, поэтому, если энергия нужна срочно, то организм использует не жиры, а углеводы. Могут окисляться для энергетических нужд и белки, но лишь в крайнем случае, например при длительном голодании. Белки для клетки – это неприкосновенный запас.

Главный по эффективности процесс синтеза АТФ происходит при участии кислорода в многоступенчатой дыхательной цепи. Кислород способен окислять многие органические соединения и при этом сразу выделять много энергии. Но такое количество энергии для организма было бы губительно. Роль дыхательной цепи и всего аэробного, т. е. связанного с кислородом, дыхания состоит именно в том, чтобы организм обеспечивался энергией непрерывно и небольшими порциями в той мере, в какой это нужно организму. Дыхательная цепь в совокупности с циклом Кребса и гликолизом позволяет довести количество АТФ с каждой молекулы глюкозы до 38. При гликолизе это соотношение было лишь 2:1. Таким образом, коэффициент полезного действия аэробного дыхания намного выше.


Борьба дзюдо характеризуется нестандартными ациклическими движениями переменной интенсивности, связанными с использованием больших мышечных усилий при активном противодействии противнику.

В ходе тренировочных занятий и соревновательных схваток происходят изменения в функциях газотранспортной системы.

При борьбе происходит очень большой расход энергии: за 1 мин он достигает в среднем 10–12 ккал и более.

Частота дыхания во время борьбы достигает 40–50 раз в мин. При этом ритм дыхания непостоянен: в моменты статических напряжений оно реже, а после схваток хорошо тренированные борцы могут регулировать дыхание. Общий кислородный запрос у борцов составляет около 16–37 л, потребление кислорода 1,8–2 л/мин. После схватки наблюдается кислородный долг, равный 25–43 % кислородного запроса. При борьбе возникает ряд положений тела, уменьшающих вентиляционные возможности легких, что ограничивает потребление кислорода.

У борцов наряду с развитием анаэробных возможностей большое значение имеет и повышение МПК. Так у квалифицированных спортсменов оно достигает 4,1–4,6 л/мин или 57 мл/кг/мин.

Кислородная потребность при борьбе может быть различной. Ее величина зависит от интенсивности работы. В связи с наличием статических напряжений во время схватки образуется кислородный долг, который может достигать значительных величин.

Кровообращение. В состоянии покоя частота сердцебиений у борцов равна в среднем 60–65 уд./мин. После схваток, в зависимости от их длительности и интенсивности, ЧСС оказывается увеличенной до 170–200 уд./мин. Артериальное давление при этом поднимается до 160–180 мм рт. ст. Это повышает требования к деятельности сердца и ведет к гипертрофии миокарда.

После тренировочных и соревновательных схваток отмечается увеличение в крови эритроцитов и гемоглобина. Количество лейкоцитов также увеличено. В связи с большим эмоциональным возбуждением борьба сопровождается значительным повышением уровня катехоламина и сахара в крови (до 150–180 мг %). Увеличено и содержание молочной кислоты (до 130 мг % и больше).

Мощность работы во время соревновательной схватки может быть оценена как субмаксимальная.

После интенсивной схватки увеличение ударного выброса происходит не за счет мобилизации роста остаточного диастолического объема крови, а в результате повышения сократительной функции миокарда.

При увеличении объема общих или специальных упражнений, выполняемых в основном в аэробном режиме, мобилизуются механизмы циркуляторной производительности и наблюдается увеличение конечного диастолического объема сердца.

Эффективность газотранспортной системы при развитии аэробного компонента выносливости можно определить по:

1) поступлению кислорода в организм путем газообмена в легких;

2) транспорту кислорода к работающим тканям;

3) утилизации диоксида углерода в тканях.

С учетом этих факторов состояние тренированности и высокий уровень спортивных достижений может быть охарактеризован тремя основными показателями:

1) величиной максимального потребления кислорода (махУО2);

2) уровнем анаэробного (лактатного) порога (ПАНО);

3) экономичностью движений.

Перейти на страницу:

Похожие книги

Психология профессиональной пригодности
Психология профессиональной пригодности

Учебное пособие содержит материалы экспериментально-теоретического изучения психологических аспектов проблемы профессиональной пригодности человека. Излагаются сущность понятия и принципы создания системы диагностики и прогнозирования профессиональной пригодности, история развития исследований в данной области. Обосновываются теоретико-методологические положения по основным вопросам проблемы. Анализируются методические приемы создания и реализации мероприятий по определению профессиональной пригодности. Рассматриваются результаты экспериментальных исследований и рекомендации автора по некоторым научно-практическим направлениям формирования и определения профессиональной пригодности.Книга предназначена для специалистов в области психологии и физиологии труда, инженерной психологии, эргономики, студентов-психологов, а также для преподавателей кафедр психологии и студентов непсихологических вузов.2-е издание.

Вячеслав Алексеевич Бодров

Учебники и пособия ВУЗов