Читаем Физика для любознательных. Том 1. Материя. Движение. Сила полностью

а) На фиг. 269 приведен график звуковых колебаний, создаваемых флейтой. Результат анализа кривой в очевиден: она представляет собой сумму сигналов, в которой значительная доля приходится на колебания а и содержится некоторая доля колебаний б. (Если подуть чуть сильнее, возникнет комбинация исходного тона и одного из его октавных повторений — обертонов — приятный музыкальный звук, хотя и необычный для флейты.)

Фиг. 269.Графическое изображение звуковых колебаний, создаваемых флейтой.

а — при нормальной игре; б — воздушная струя большой силы дает октавное повторение звука; в — воздушная струя несколько сильнее нормальной.

б) В радиотехнике можно без труда получить «прямоугольную волну» и продемонстрировать ее на экране осциллографа. (Форму прямоугольного сигнала может иметь, например, кривая, описывающая звук, издаваемый «щелкунчиком» с металлическими челюстями, которые быстро раскрываются, и резко смыкаются.) На фиг. 270 представлена попытка произвести гармонический анализ прямоугольного сигнала. Основная составляющая имеет такую же «длину волны», как и прямоугольный сигнал. В некоторых местах она выступает за пределы исходной кривой, а в других — не доходит до нее, и эти несоответствия формы должны быть компенсированы. Следующая составляющая должна иметь «длину волны», равную 1/3 основной, т. е. втрое большую частоту. Расхождения, остающиеся после этой составляющей, в значительной мере устраняются добавлением небольшой по амплитуде составляющей, у которой частота в 5 раз больше частоты исходной кривой, и т. д.

Фиг. 270.Разложение прямоугольного сигнала на гармонические составляющие.

Заметьте, что даже при большом числе гармоник результирующая кривая (сумма) обнаруживает нежелательные острые выбросы.

Для точного описания необходим бесконечный ряд составляющих, отношение частот которых к частоте исходной кривой равно 1, 3, 5, 7… Однако даже сумма нескольких первых составляющих дает удовлетворительное приближение (если не считать нежелательных выбросов на вершине). Так мы получаем удобный способ проверки динамиков, микрофонов и т. д. На прибор подают прямоугольный сигнал. Если прибор хорошо воспроизводит форму прямоугольного сигнала, это значит, что он способен пропускать как очень высокие, так и весьма низкие частоты.

в) Речевые колебания часто имеют сложную форму. На фиг. 271 показана довольно простая по форме кривая, которая представляет собой графическое изображение звука «у…», произносимого нараспев. Вы можете предсказать результат разложения этого колебания на гармонические составляющие: основной тон + тон значительно более высокой частоты, который мы считаем характерным для данного гласного звука. Такой анализ чрезвычайно важен для инженеров: им пользуются при проектировании систем телефонной связи, по которой передается речь, при разработке экономичных преобразователей речевых колебаний в кабельной телефонии и высококачественных приемников, предназначенных для воспроизведения речи. Произнесенные нараспев другие гласные звуки или недостаточно искусные певцы вызывают гораздо более сложные с виду колебания, но эти колебания тоже можно без труда разложить на несколько основных составляющих.

Фиг. 271.Кривая звука «у…».

г) «Волновой пакет». Гармонический анализ можно применить к одиночному импульсу (ему соответствует звук от шлепка или радиоволна, испускаемая при ударе молнии) и к короткому цугу волн, вроде волнообразного всплеска, которым в современной теории характеризуют положение движущегося электрона. Для идеального представления таких сигналов приходится складывать составляющие, которые образуют бесконечный набор частот, но составляющие с заметной амплитудой равномерно распределены в пределах полосы частот вокруг исходной частоты.

Мы должны составить сумму, содержащую основную составляющую с длиной волны исходного цуга волн + составляющую с несколько большей длиной волны +… + составляющую с еще большей длиной волны… + и т. д., и такой же набор более коротких длин волн. Горбы этих составляющих совпадают друг с другом в центре, но дальше согласованность их хода нарушается, и они гасят друг друга. Если исходный цуг волн длинный, то основные составляющие будут заключены в узком интервале частот или длин волн — чем длиннее цуг, тем уже полоса частот. Напротив, для очень короткого цуга (в предельном случае для отдельного выброса или импульса) требуется широкая полоса частот. (Это не очевидно; не обращаясь к математике, вы можете в лучшем случае сказать, что это могло бы быть так.) Изложенные представления имеют важное значение в современной атомной теории.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки