Читаем Физика для любознательных. Том 1. Материя. Движение. Сила полностью

В арифметике мы делим 10 центов на 5 и получаем 2 цента. Или мы делим 10 овец по 5 овец и получаем 2 отары. Мы сомневаемся в возможности делить 10 овец на 5 центов — ведь речь идет, возражаем мы, о предметах разного рода. Но иногда мы делим предметы одного рода на предметы другого рода, например, если 10 центов разделить на 5 мальчиков, то у каждого мальчика окажется в кармане 2 цента. А разделив 60 центов на дюжину апельсинов, получим стоимость каждого апельсина. В науке часто производят подобные деления, и чтобы ответ был верным, он должен содержать как число, так и единицы измерения. Если жук, двигаясь с постоянной скоростью, проползает 3 да за 2 часа, то мы можем сказать: «Если разделить 3 м на 2 часа, т. е. записать 3 м/2 часа, то получим 1,5 м в час». Ответ показывает расстояние, которое жук проползает за каждый час, но это не означает, что жук передвигается обязательно в течение одного часа. Это применимо и к 1/4 часа, и к 1/2 часа, и к 11/2 часам, а возможно, и к 21/2 часам.

Эта формулировка применима даже к очень коротким интервалам времени: жук может ползти с той же самой скоростью 1,5 м в час в течение нескольких секунд. Мы можем мысленно сократить интервал времени, по-прежнему считая, что жук ползет со скоростью 1,5 м в час. В пределе мы говорим, что жук обладает скоростью 1,5 м в час в некоторый определенный момент времени. Это уже новое представление, представление о скорости в некоторый момент времени. Мы не можем теперь делить расстояние на промежуток времени — деление нуля на нуль не имеет смысла; тем не менее спидометр будет показывать в какой-то момент времени скорость 1,5 м в час. Правда, настоящий жук передвигается то быстрее, то медленнее, но мы легко можем представить себе идеального жука, передвигающегося с постоянной скоростью. В таком случае единица «один метр в час» — это уже не результат деления, а самостоятельная величина, единица скорости изменения пути, и скорость 1,5 м в час — это скорость изменения пути, предельное значение, отмеченное в некоторый момент времени.

Математическое понятие предела появляется и в физике, и в математическом анализе. Чтобы постичь сущность понятия предел, посмотрим, чему равна сумма большого числа членов ряда: 1, 1/2, 1/4, 1/8, 1/16…. Сумма первых двух членов равна 11/2, сумма трех членов 13/4, десяти членов 1311/512 и т. д. Сколько бы членов ряда мы не брали, сумма никогда не будет в точности равна 2, но можно как угодно близко подойти к 2, если взять достаточно большое число членов ряда. (Заметим, что сумма всегда меньше 2 на величину, равную как раз последнему взятому члену. Поэтому эту разность можно сделать как угодно малой.) Таким образом, мы говорим, что 2 есть предел суммы большого числа членов ряда.

Наклон касательной, о котором шла речь выше, тоже представляет собой предел, а именно предел наклона хорды, проходящей через две точки на графике.

До нынешнего века физики имели дело с большим числом непрерывно изменяющихся отношений, таких, как скорость, плотность, освещенность. Теперь же оказалось, что множество физических величин характеризуется скачкообразным изменением, подобным резким изменениям скорости настоящего жука; эти величины не удается непрерывно уменьшать до предельных значений. Для примера рассмотрим отношение (масса)/(объем), которое мы называем плотностью. Мы можем поделить массу большого куска алюминия на его объем или массу маленького куска алюминия на его объем и получим одинаковую плотность.

Но если мы попытаемся продолжать определять таким образом плотность, переходя ко все меньшим и меньшим количествам вещества, то, дойдя до одного-единственного атома, вынуждены будем остановиться. Какие отношения физических величин можно вычислить в пределе в математическом смысле этого слова? Какие величины не обладают «атомистической» природой? Этот вопрос заслуживает внимания, и мы вернемся к нему в самом конце нашего курса. Употребляя слова «на» или «в» или знак косой черты, который их заменяет, для обозначения понятия «деленный (деленная) на» или «на каждый (каждую)», стоит подумать, что эти слова играют определенную роль в представлении об отношении.

Единицы измерения, применяемые в науке

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки