Изменения, которым мы подвергли исходное равенство a = (v — v0)/t, представляют собой лишь изменения, допускаемые правилами логики.
Полученный результат v = v0 + at точно так же верен или неверен, как исходное равенство a = (v — v0)/t. Мы видим в этом случае, что новая «формула» — это просто новый вариант прежнего отправного положения, поскольку она гласит:
КОНЕЧНАЯ СКОРОСТЬ = НАЧАЛЬНАЯ СКОРОСТЬ + ПРИРАЩЕНИЕ В ЕДИНИЦУ ВРЕМЕНИ∙ВРЕМЯ
Величина ПРИРАЩЕНИЯ В ЕДИНИЦУ ВРЕМЕНИ должна равняться приращению скорости
Согласно этой формулировке,
КОНЕЧНАЯ СКОРОСТЬ = НАЧАЛЬНАЯ СКОРОСТЬ + ПРИРАЩЕНИЕ СКОРОСТИ = КОНЕЧНАЯ СКОРОСТЬ
Читателям, знакомым с алгеброй, это рассмотрение должно показаться излишне длинным. Можно было бы просто написать
a = (v — v0)/t, следовательно, at = v — v0, или v = v0 + at.
Если же в выводе формул вы видите некое таинство, то это рассмотрение следует прочесть внимательно. Неопытный читатель может, пожалуй, ухватиться за высказанные нами слова в защиту алгебры, но дело не в этом; нужно отвыкнуть от ошибочных представлений об «истинности» формул или о том, что в выводе формул есть нечто таинственное.
(2) s = 1/2 (v + v0)∙at
При экспериментальной проверке мы будем иметь дело с расстоянием, а не со скоростью. Чтобы выяснить, как соотношение между пройденным расстоянием и затраченным временем вытекает из нашего предположения о постоянном ускорении, нам надо знать расстояние при изменяющейся скорости. Руководствуясь здравым смыслом, мы приходим к предположению, что нужно пользоваться средней скоростью v-, получаемой сложением начальной и конечной скоростей и делением их суммы на 2. Таким образом,
СРЕДНЯЯ СКОРОСТЬ v- = (v0 + v)/2,
Мы пользуемся этой средней скоростью как неизменной величиной вместо реальной изменяющейся скорости и находим пройденное расстояние, умножая среднюю скорость на время. Таким образом,
РАССТОЯНИЕ s = v-t,
или
s = 1/2 (v + v0)∙at
В этом соотношении ускорение а не фигурирует. Тем не менее соотношение неверно, если ускорение непостоянно (см. задачу 6). Это выражение не простая перегруппировка прежнего выражения; оно содержит предположение относительно средней скорости. Это предположение (до сих пор оно было основано лишь на «здравом смысле») можно проверить с помощью математического анализа или изящного геометрического способа, предложенного еще Галилеем (см. задачу 6). Оба способа показывают, что при движении с постоянным ускорением такое употребление средней скорости правильно. Для других типов движения нужны какие-то иные способы усреднения, арифметическое среднее брать не годится[26]. Таким образом, наше предположение верно для движения с постоянным ускорением; мы используем его в качестве примера лишь постольку, поскольку знаем, что оно верно. Так, элементарное изложение приспосабливается для получения правильных результатов. Хотя это иногда неизбежно, такой подход оставляет, к сожалению, впечатление, будто ученый лишь выдвигает правдоподобные гипотезы, он не дает представления о том, как на самом деле ученый-естествоиспытатель осторожно нащупывает путь, подвергая свои предположения честной проверке. Поэтому вам необходимо изучить задачу 6.
(3) s = v0∙t + (1/2)∙at2
Мы по-прежнему хотим выразить пройденное расстояние через время и ускорение, не пользуясь конечной скоростью. Мы получим это соотношение из выражений (1) и (2); с помощью одного из них мы найдем v и сможем поставить это полученное выражение вместо v в другом соотношении. Так,
s = 1/2 (v0 + v)∙t или v = v0 + at
следовательно,
s = 1/2 (v0 + v0 + at)∙t = 1/2 (2v0 + at)∙t = (2v0∙t)/2 + (at∙t)/2
Таким образом,
s = v0∙t + (1/2)∙at2
Это соотношение удобно для экспериментальной проверки и описывает движение с постоянным ускорением.
Если отсчет времени начинается с момента, когда движущееся тело находится в состоянии покоя, то начальная скорость равна нулю, (v0 = 0), и соотношение приобретает вид
s = (1/2)∙at2
Поскольку а постоянно, 1/2 а тоже постоянно, поэтому мы можем записать
s = (Постоянная)∙t2, или s ~ t2.
Таким образом, мы можем сказать: теория предсказывает, s ~ t2 для движения, которое начинается из состояния покоя и происходит с постоянным ускорением. Говоря «теория предсказывает», мы имеем в виду, что, исходя из некоторых предположений и используя аппарат логического вывода (включая методы математики), мы как бы выразили эти предположения в несколько иной, новой форме. Если результаты эксперимента согласуются с этой новой формой, мы можем прийти к выводу, что наши предположения (и наш аппарат) «верны» или «подтверждены». Тем не менее зачастую мы не можем быть уверены в том, что выбранные нами предположения дают единственно возможное правильное объяснение. Осторожнее было бы сказать, что пока наши предположения соответствуют фактам.