Читаем Физика для любознательных. Том 1. Материя. Движение. Сила полностью

Изменения, которым мы подвергли исходное равенство a = (v — v0)/t, представляют собой лишь изменения, допускаемые правилами логики.

Полученный результат v = v0 + at точно так же верен или неверен, как исходное равенство a = (v — v0)/t. Мы видим в этом случае, что новая «формула» — это просто новый вариант прежнего отправного положения, поскольку она гласит:

КОНЕЧНАЯ СКОРОСТЬ = НАЧАЛЬНАЯ СКОРОСТЬ + ПРИРАЩЕНИЕ В ЕДИНИЦУ ВРЕМЕНИ∙ВРЕМЯ

Величина ПРИРАЩЕНИЯ В ЕДИНИЦУ ВРЕМЕНИ должна равняться приращению скорости

Согласно этой формулировке,

КОНЕЧНАЯ СКОРОСТЬ = НАЧАЛЬНАЯ СКОРОСТЬ + ПРИРАЩЕНИЕ СКОРОСТИ = КОНЕЧНАЯ СКОРОСТЬ

Читателям, знакомым с алгеброй, это рассмотрение должно показаться излишне длинным. Можно было бы просто написать

a = (vv0)/t, следовательно, at = v v0, или v = v0 + at.

Если же в выводе формул вы видите некое таинство, то это рассмотрение следует прочесть внимательно. Неопытный читатель может, пожалуй, ухватиться за высказанные нами слова в защиту алгебры, но дело не в этом; нужно отвыкнуть от ошибочных представлений об «истинности» формул или о том, что в выводе формул есть нечто таинственное.

(2) s = 1/2 (v + v0)∙at

При экспериментальной проверке мы будем иметь дело с расстоянием, а не со скоростью. Чтобы выяснить, как соотношение между пройденным расстоянием и затраченным временем вытекает из нашего предположения о постоянном ускорении, нам надо знать расстояние при изменяющейся скорости. Руководствуясь здравым смыслом, мы приходим к предположению, что нужно пользоваться средней скоростью v-, получаемой сложением начальной и конечной скоростей и делением их суммы на 2. Таким образом,

СРЕДНЯЯ СКОРОСТЬ v- = (v0 + v)/2,

Мы пользуемся этой средней скоростью как неизменной величиной вместо реальной изменяющейся скорости и находим пройденное расстояние, умножая среднюю скорость на время. Таким образом,

РАССТОЯНИЕ s = v-t,

или

s = 1/2 (v + v0)∙at

В этом соотношении ускорение а не фигурирует. Тем не менее соотношение неверно, если ускорение непостоянно (см. задачу 6). Это выражение не простая перегруппировка прежнего выражения; оно содержит предположение относительно средней скорости. Это предположение (до сих пор оно было основано лишь на «здравом смысле») можно проверить с помощью математического анализа или изящного геометрического способа, предложенного еще Галилеем (см. задачу 6). Оба способа показывают, что при движении с постоянным ускорением такое употребление средней скорости правильно. Для других типов движения нужны какие-то иные способы усреднения, арифметическое среднее брать не годится[26]. Таким образом, наше предположение верно для движения с постоянным ускорением; мы используем его в качестве примера лишь постольку, поскольку знаем, что оно верно. Так, элементарное изложение приспосабливается для получения правильных результатов. Хотя это иногда неизбежно, такой подход оставляет, к сожалению, впечатление, будто ученый лишь выдвигает правдоподобные гипотезы, он не дает представления о том, как на самом деле ученый-естествоиспытатель осторожно нащупывает путь, подвергая свои предположения честной проверке. Поэтому вам необходимо изучить задачу 6.

(3) s = v0t + (1/2)∙at2

Мы по-прежнему хотим выразить пройденное расстояние через время и ускорение, не пользуясь конечной скоростью. Мы получим это соотношение из выражений (1) и (2); с помощью одного из них мы найдем v и сможем поставить это полученное выражение вместо v в другом соотношении. Так,

s = 1/2 (v0 + v)∙t или v = v0 + at

следовательно,

s = 1/2 (v0 + v0 + at)∙t = 1/2 (2v0 + at)∙t = (2v0t)/2 + (att)/2

Таким образом,

sv0t + (1/2)∙at2

Это соотношение удобно для экспериментальной проверки и описывает движение с постоянным ускорением.

Если отсчет времени начинается с момента, когда движущееся тело находится в состоянии покоя, то начальная скорость равна нулю, (v0 = 0), и соотношение приобретает вид

s = (1/2)∙at2

Поскольку а постоянно, 1/2 а тоже постоянно, поэтому мы можем записать

s = (Постоянная)∙t2, или s ~ t2.

Таким образом, мы можем сказать: теория предсказывает, s ~ t2 для движения, которое начинается из состояния покоя и происходит с постоянным ускорением. Говоря «теория предсказывает», мы имеем в виду, что, исходя из некоторых предположений и используя аппарат логического вывода (включая методы математики), мы как бы выразили эти предположения в несколько иной, новой форме. Если результаты эксперимента согласуются с этой новой формой, мы можем прийти к выводу, что наши предположения (и наш аппарат) «верны» или «подтверждены». Тем не менее зачастую мы не можем быть уверены в том, что выбранные нами предположения дают единственно возможное правильное объяснение. Осторожнее было бы сказать, что пока наши предположения соответствуют фактам.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки