Математику свойственно ярко выраженное поэтическое чувство формы математического языка, поэтому он счел бы приведенный выше метод чудовищно громоздким. Он сказал бы: «Имеется более изящный вывод…» и получил бы ответ быстро и красиво. Нематематиков, наблюдающих за его действиями, поразит превосходство его знаний, а атмосфера таинства может вызвать даже чувство досады. На самом же деле все обстоит значительно проще. Математик — только человек и, как любой другой исследователь, находит правильный путь в результате нескольких попыток, хотя простые задачи могут быть проделаны уже прежде и просто храниться в его памяти как «математический здравый смысл». Найдя ответ любым методом, громоздким или нет, математик может попытаться действовать от полученного результата, стремясь найти более изящный способ решения, подобно альпинисту, ищущему лучший путь восхождения. В этом нет греха, но математик часто забывает рассказать неспециалисту о той работе, которую он уже проделал прежде, и поражает его изящным методом, как бы извлеченным тут же из кармана. Давайте попробуем провести такой аналитический поиск, размышляя все время вслух. Ответ, который мы хотим получить, представляет собой выражение v2 = v20 + 2as, полученное в результате утомительных и нудных алгебраических выкладок. Попробуем раскрыть это выражение. Можно ли, судя по его виду, легко видоизменить его путем алгебраических преобразований? Можно ли каким-то очевидным образом упростить или расчленить его? Нет, нельзя. Тогда придется действовать по-другому. Попробуем произвести перенос из одной части равенства в другую. Мы можем прийти к выражению v2 — v20 = 2as. Можно ли, воспользовавшись методами алгебры, без большого труда сделать что-нибудь с этим выражением? Оказывается, можно. Левая часть этого равенства, содержащая множители (v + v0)(v — v0), нам давно знакома. Можно было бы составить левую часть равенства из этих множителей, если бы нам удалось каким-нибудь образом определить их по отдельности. Но где мы видели уже выражение (v + v0)? Мы встречались раньше с этим множителем в соотношении (2); s = 1/2(v + v0)t. Значит, v + v0= 2s/t. А где мы встречались с величиной (v — v0)? В определении ускорения, которое мы записали в виде a = (v — v0)/t. Следовательно, (v — v0) = at. Теперь нам нужно получить величину v2 — v20, для этого достаточно перемножить (v + v0) и (v — v0). Воспользуемся с этой целью соотношениями (v + v0) = 2s/t и (v — v0) = at:
(v + v0)(v — v0) = 2s/t (at)
Таким образом, (v2 — v20) = 2as, что приводит к нужной нам форме записи.
Теперь, располагая изложенным методом, к которому мы пришли в результате анализа, опустим детали наших изысканий и начнем снова.
Чтобы вывести соотношение v2 = v20 + 2as изящным методом, начнем с определения ускорения
a = (v — v0)/t
и с формулы, выражающей пройденный путь через среднюю скорость s = 1/2(v + v0)t, и просто перемножим оба эти уравнения. Мы получим соотношение a∙s = 1/2(v2 — v20), которое приводит к выражению
v2 = v20 + 2as
Вот четыре соотношения между величинами v, v0, a, s и t:
v = v0 + at, s = 1/2(v + v0)t, s = v0t + (1/2)at2, v2 = v20 + 2as
Эти соотношения позволяют быстро вычислить значение любой входящей в них величины, если известны значения трех других величин.
Алгебра позволяет вычислить результирующий путь
Числовым значениям необходимо придавать подходящие знаки + и —. Например, если начальная скорость движущегося тела равна 3 м/сек в направлении на восток, а ускорение составляет 1 м/сек/сек и направлено тоже на восток, то мы можем записать v0 = +3 и а = +1. Если же v0 = 3 м/сек в направлении на восток, а ускорение в противоположном направлении равно 1 м/сек/сек к западу, то одна из этих величин должна записываться со знаком минус. Если мы говорим, что v0 = +3, то мы должны записать а = —1, используя знак плюс для скорости, ускорения и пройденного пути в направлении на восток, а знак минус для перечисленных величин, направленных на запад. Тогда s будет равно результирующему расстоянию, пройденному за время t, а не арифметической сумме перемещений в западном и восточном направлениях. Это происходит потому, что при вычислении каждого отрезка пути мы приписываем знак плюс перемещениям в направлении на восток, а знак минус перемещениям на запад, и когда мы складываем эти отрезки пути со знаками + и —, стремясь найти s, то в соответствии с правилами алгебры получим результирующую разность перемещений. При v0 = +3 и а = —1 движение будет замедленным: тело движется все медленнее и медленнее вперед в течение 3 сек, останавливается, а затем движется все быстрее и быстрее в обратном направлении. Через 5 сек траектория движения будет такой, как показано на фиг. 13: тело переместится на 4,5 м вперед, затем на 2 м назад, и результирующее перемещение будет равно 2,5 м.
Фиг. 13. Результирующее пройденное расстояние s.
Алгебра дает