а — лодка плывет со скоростью 3 км/час; человек идет со скоростью 4 км/час; б — скорость по отношению к берегу 7 км/час.
Если же направления движения оказываются различными, то простая арифметика бессильна. Если к перемещению на 3 м в северном направлении прибавить перемещение на 4 м в восточном направлении, то мы не получим перемещения на 7 м. Точно так же скорость 4 тем/час в направлении на восток плюс скорость 3 км/час в направлении на север не даст в сумме скорости 7 км/час в каком-либо направлении. Чтобы действовать в соответствии с наблюдаемыми в жизни фактами, мы должны пользоваться другим типом сложения, которое мы называем
Здравый смысл (в данном случае простые сведения, приобретенные при ходьбе пешком, вождении автомашин, плавании на лодке и т, д.) подсказывает, как следует производить геометрическое сложение. Предположим, вы хотите сложить перемещения на 4 м к востоку и на 3 м к северу, чтобы
Фиг. 36.
Фиг. 37.
Можно проделать эти перемещения в другом порядке и прийти в тот же пункт назначения. Если бы вы смогли как-то проделать оба перемещения одновременно, то пришли бы в ту же конечную точку. В самом деле, это можно проделать, если приспособить ковер, который передвигался бы по полу при помощи электромотора.
Тогда, став на ковер (на фиг. 38 показан игрушечный автомобиль на коврике), можно было бы включить мотор, чтобы он протащил ковер на 4 шага вправо, а самому в это время сделать 3 шага вперед. По отношению к ковру вы сделаете только 3 шага вперед. С высоты птичьего полета покажется, что вы проделываете оба перемещения одновременно и приходите в тот же пункт назначения, как если бы вы сперва проделали одно перемещение, а потом другое.
Фиг. 38.
Игрушечный автомобиль движется по ковру, а ковер в это время тянет по полу электродвигатель. Движение автомобиля по отношению к полу совершается по диагонали.
Какое единственное перемещение могло бы заменить эти два, проделанные одновременно или по отдельности, и привести вас в тот же пункт назначения? Простое перемещение по прямой линии из исходной точки в конечную. Это перемещение называют
Фиг. 39.
Если перемещения совершаются не под прямым углом, то применимо такое же изображение в масштабе, как показано на фиг. 40.
Фиг. 40.
Если перемещения совершаются одновременно (так бывает, когда полет самолета происходит при наличии ветра) мы можем по-прежнему считать, что сначала происходит одно перемещение, а потом другое, и прийти к результирующему перемещению
Фиг. 41.
Мы находим результирующее перемещение, беря сначала одно перемещение, а затем другое, как показано на фиг. 42,
Фиг. 42.
Это правило для сложения перемещений несомненно верно; в этом нас убеждает здравый смысл, основанный на опыте, приобретенном начиная с раннего детства.
Это правило можно обратить и разложить перемещение