Фиг. 43.Примеры сложения перемещений по правилу параллелограмма.
Задача 6
а) На фиг. 44, а изображено перемещение R, разложенное на две компоненты А1 и В1; на фиг. 44, б показано то же самое перемещение R, разложенное на другую пару компонент А2 и В2. Скопируйте эти рисунки и добавьте к ним еще несколько, на каждом из которых было бы изображено то же самое перемещение R, разложенное на другие компоненты: А3, В3, А4, В4 и т. д.
Фиг. 44.Вектор R можно разложить на компоненты A1 и B1, A2 и В2 или на другие пары компонент. Компоненты вектора R не обязательно должны составлять между собой угол 90°.
б) Покажите, что компоненте А можно придать любое направление и любую величину и при этом найти такую компоненту В, которая в сумме с А даст R. (Это равносильно вычитанию векторов R-А, которое находит применение в физике и встретится нам в дальнейшем.)
Скорость
Направление перемещения имеет столь же важное значение, как и величина. В физике скорость связывают с определенным направлением. Скорость обладает обоими качествами: величиной и направлением[30]. Подчиняются ли скорости правилу геометрического сложения? Или, как сказал бы ученый, являются ли скорости «векторами»?
Векторы (определение)
Векторы — это величины, складываемые геометрическим способом. Они называются «векторами»[31] потому, что их можно охарактеризовать, проведя отрезок прямой, показывающий как величину вектора (в некотором масштабе), так и его направление.
Правило сложения двух векторов
Геометрическое сложение описывается следующим правилом. (Согласно определению векторов, оно автоматически применимо к ним.)
Чтобы сложить два вектора, выбирают подходящий масштаб и вычерчивают их в этом масштабе из одной точки, а затем строят на складываемых векторах параллелограмм. Тогда сумма векторов будет изображаться диагональю параллелограмма, соединяющей исходную точку с противолежащей вершиной.
При таком способе сложения сумма нескольких векторов определяется как единственный вектор, который может заменить первоначальные векторы, или производит такой же физический эффект.
Подобно тому как векторы А и В дают при сложении сумму R2 (фиг. 45), можно сложить векторы А и В и С, прибавив С к R2, в результате чего получим вектор R3. Прибавляя далее вектор D, получаем R4 и т. д. Или, проще говоря, любое количество векторов можно складывать, проводя следующий прибавляемый вектор из конца предыдущего, как показано на фиг. 46 (этот рисунок представляет собой лишь упрощение фиг. 45, б), и их сумма будет изображаться вектором, соединяющим исходную точку с конечной.
Фиг. 45.Сложение векторов путем построения параллелограмма.
а — этапы построения; б — результат построения.
Фиг. 46.Сложение векторов путем построения многоугольника.
Какие величины относятся к векторам? Иначе говоря, какие величины складываются геометрически по правилу параллелограмма? Векторами являются перемещения, или, если называть их более строго, «направленные расстояния» или «смещения». Раз перемещения — векторы, то достаточно разделить их на промежуток времени, за который происходит перемещение, чтобы увидеть, что скорости — тоже векторы. Продолжая этот подход, мы видим, что ускорения — тоже векторы[32]. Нам встретятся и другие векторы, другие величины, которые нужно измерять с помощью приборов и которые подчиняются правилу геометрического сложения?
Здесь возникает важный вопрос: являются ли силы векторами, т. е. подчиняются ли они правилам геометрического сложения?