Читаем Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра полностью

Итак, мы уподобили α- и β-лучи ракетам, стартующим из ядра. Когда они вылетают из ядра, масса последнего меняется: альфа-частица уносит массу, равную 4 массам атома водорода. Бета-частица уносит ничтожную массу, которая снова восстанавливается, когда образовавшийся атом захватывает недостающий ему внешний электрон. Заряд ядра при этом также меняется. Альфа-частица уносит заряд +2е, уменьшая тем самым заряд ядра (атомный номер понижается) на 2 единицы. Бета-частица уносит заряд — е, увеличивая заряд ядра на +е. При этом атомный номер ядра увеличивается на 1.



Фиг. 121.Радиоактивные превращения.


Изменения атомного номера Z ведут к такому же изменению в числе внешних электронов нейтрального атома и тем самым к изменению его химических свойств, которые определяются внешними электронами. Число же и распределение этих электронов определяются зарядом ядра Ze, и мы бессильны превратить один химический элемент в другой, не имея возможности изменить заряд ядра. Мечта алхимиков о превращении свинца (Z = 82) в золото (Z = 79) осуществилась бы, если бы можно было отобрать у каждого ядра свинца по три +е заряда. При радиоактивном распаде элементов заряд их меняется. Нельзя ли вызвать или хотя бы повлиять на такие изменения? Первые эксперименты показали: нет, и теперь ясно, что надеяться на это было безнадежно, пока не стали доступны для бомбардировки снаряды с очень высокой энергией. Масса электронов очень мала: они, словно кометы, легко заворачиваются ядром. Альфа-частицы несут «++» заряд и поэтому отталкиваются ядром. Они вылетают из радиоактивного ядра с кинетической энергией в несколько миллионов электронвольт. Поэтому для их возвращения назад нужна такая же по величине энергия. (Бесполезно использовать для бомбардировки нейтральный атом: уже на ранней стадии сближения с ядром его электроны отрывались бы от него и ядро отталкивалось бы подобно α-частице.) Однако некие надежды возлагались на бомбардировку быстрыми альфа-частицами легких атомов с малым атомным номером, т. е. с малым зарядом ядра. Они-то и привели к первым успехам в искусственном превращении элементов.


Искусственный распад. Превращения, осуществленные человеком

Спустя четверть века после открытия радиоактивности Резерфорду удалось сокрушить ядра нескольких атомов, облучая их быстрыми альфа-частицами. Альфа-частицы, выпущенные из радиоактивного источника, пронизывали газообразный азот. В конце своего пробега альфа-частицы иногда выбивали вперед более легкие частицы. Выбитые частицы закручивались с помощью магнитного поля, и тем самым можно было убедиться, что это протоны[156] Н+. Несмотря на то что эти события были редкими, они были сфотографированы. Около четверти миллиона треков в камере Вильсона было снято на кинопленку и обнаружено семь таких событий (фиг. 122). На снимках была видна отскочившая легкая частица, несомненно протон, и короткий трек атома отдачи, но исходная α-частица на них уже видна не была. Измерения углов и длины треков показали, что при столкновении сохранялся лишь момент количества движения, но не кинетическая энергия.



Фиг. 122.Фотоснимки в камере Вильсона.

Превращения ядра при его бомбардировке. Фотоснимок Блэккетта, демонстрирующий открытие Резерфорда. Альфа-частица сталкивается с ядром азота и исчезает. В результате-возникает ядро отдачи кислорода и протон (ядро водорода) (P. M. S. ВIасkett, Ргос. Roy. Soc. Load.).


Запишем теперь это следующим образом:

альфа-частица (ядро Не) СТАЛКИВАЕТСЯ с ядром атома азота ИСПУСКАЕТСЯ протон (ядро Н) получается новое ядро???

(заряд = +2е) (заряд = + 7е) (заряд = +е) (заряд = 7е + 2e — 1e)

(масса = 4 маcсы протона) (масса = 14) (масса = 1) (масса = 14 + 4–1)

Таким образом, новое ядро должно иметь заряд +8е, характеризующий кислород, и массу 17, до некоторой степени необычную, но не такую уж неожиданную для кислорода. (С помощью масс-спектрографа было показано, что в обычном кислороде помимо атомов О16 всегда присутствуют более тяжелые атомы О17.)



Фиг. 123.Позитрон.

Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии