Читаем Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра полностью

Резерфордовская модель атома имела успех — она способствовала размышлениям и экспериментам, — но парадокс оставался. В атоме вокруг ядра существует поле, убывающее по закону обратных квадратов (что было доказано рассеянием альфа-частиц), а электроны остаются в этом поле далеко от ядра (это также было подтверждено рассеянием альфа-частиц, а позднее спектрами рентгеновских лучей). Поэтому: 1) электроны не могут покоиться в состоянии устойчивого равновесия (теорема Ирншоу). Атомы не разрушаются, излучая при этом электромагнитные волны; следовательно, 2) электроны не могут находиться в движении по эллиптическим кеплеровским орбитам. Утверждения 1) и 2) противоречат друг другу. Далее, иногда атомы излучают; они испускают свет. Световое излучение раскаленного газа расщепляется на очень резко определенные цвета, спектральные «линии» определенной длины волны и частоты колебаний. Частоты излучений возбужденных атомов весьма определенно сгруппированы в несколько серий, характерных для атомов каждого элемента. К 1905 г. были известны общие формулы для спектральных серий, а измеренные частоты некоторых серий расшифрованы с помощью простого закона, для которого теория не могла предложить удовлетворительного объяснения. По-видимому, этот простой закон каким-то образом учитывал квантовые ограничения, поскольку дело касалось фотонов, (Каждая спектральная линия представляет собой свет одного цвета, одной частоты, поэтому она должна представлять собой поток фотонов с одинаковой энергией.) Этот простой закон содержит постоянную, которая оказывается одинаковой для многих спектров. Если бы удалось получить эту универсальную константу спектров, комбинируя другие общие постоянные, такие, как заряд электрона е, скорость света с, постоянная Планка h и т. п. (и подбросив им на помощь числа типа π, 2 или √2), это было бы очень приятным открытием. А если бы при этом еще мощно было привести ясные теоретические аргументы в пользу выбора именно такой комбинации, то это было бы великим открытием. В этом направлении было много попыток и заявлений об успехе — ученые от Пифагора до Кеплера и позже вплоть до нынешних дней искали золотое правило, которое бы объединило вместе наиболее важные числа; результаты этих поисков простирались от бессмыслицы до знаменитых открытий. Бор не только нашел такую комбинацию для постоянной спектра, но и обосновал ее, что принесло ему прочную славу.


Атом Бора. Правила

В 1913 г. смелый и неизвестный молодой датский физик Нильс Бор предложил минимальные изменения классической физики, с помощью которых можно объяснить факты и, комбинируя которые, сделать замечательные предсказания. Обратившись к парадоксу со стабильностью атомов, которые должны были бы быстро коллапсировать[190], он предложил следующие новые правила:

ПЕРВОЕ ПРАВИЛО. Атомы построены в соответствии с моделью Резерфорда, но электроны движутся по стабильным орбитам без излучения. (Хотя этим заявлением противоречие было только подтверждено, но его ясное признание уже было большим утешением.)

ВТОРОЕ ПРАВИЛО. Разрешены только некоторые орбиты. Эти стабильные орбиты определяются по квантовым правилам следующим образом. У электрона, движущегося по стабильной орбите, действие должно всегда быть равным h, или 2h, или 3h…, nh[191]. Имеем

ДЕЙСТВИЕ = ЭНЕРГИЯ ∙ ВРЕМЯ,

= [СИЛА ∙ РАССТОЯНИЕ] ∙ ВРЕМЯ,

= [СИЛА ∙ ВРЕМЯ] ∙ РАССТОЯНИЕ,

= ИМПУЛЬС ∙ РАССТОЯНИЕ.

Для круговой орбиты, например, мы смело берем в качестве расстояния длину окружности и пробуем проверить правило:

ИМПУЛЬС ∙ (ДЛИНА ОКРУЖНОСТИ) = h,

или 2h, или 3h

Вообще, mv∙2πR = nh, где n = 1 соответствует низшей разрешенной орбите, n = 2 — следующей и т. д. Квантовое число n должно быть целым числом.

На модель атома в виде солнечной системы таким образом накладываются жесткие ограничения: разрешены лишь определенные орбиты, а именно только такие, на которых ДЕЙСТВИЕ равно nh, где n — целое число.




ТРЕТЬЕ ПРАВИЛО. Один из электронов атома можно переместить (например, при бомбардировке) на свободную внешнюю орбиту, так что получится «возбужденный» атом с большей энергией. Затем электрон может перескочить с внешней орбиты на свободную внутреннюю. Когда это происходит, атом испускает избыток энергии в виде кванта света.

h∙ЧАСТОТА ИСПУЩЕННОГО СВЕТА = ИЗБЫТОК ЭНЕРГИИ ЭЛЕКТРОНА=

= ЭНЕРГИЯ ЭЛЕКТРОНА на «внешней» орбите — ЭНЕРГИЯ ЭЛЕКТРОНА на «внутренней» орбите


Атом Бора. Плодотворная теория

Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии