Теперь мы рассматриваем эти волны де-Бройля как схему, которая сообщает нам о возможном местонахождении электрона: чем сильнее[202]
волна в какой-либо области, тем вероятнее, что мы обнаружим там электрон. Эти волны — бегущие волны для движущихся свободных электронов или стоячие волны для электронов, связанных в атоме, — не есть волны движущегося вещества или переменного поля — это «волны вероятности». Кольцевые волны, предложенные впервые для объяснения боровских орбит, могут определять вероятность местонахождения электрона в некоторой области возле окружности. Либо они могут быть эквивалентны волнам, бегущим навстречу друг другу по кольцу. Тогда уже бесполезно спрашивать, в какой точке окружности расположен электрон. В настоящее время для указания вероятности местонахождения электрона мы имеем другие волновые картины для разных состояний:Такая точка зрения объясняет, в частности, почему атом не может сжиматься так, чтобы электроны двигались по все меньшим и меньшим орбитам. Если положение каждого электрона действительно описывается стоячей волной, то на длине окружности наименьшей орбиты должна укладываться ровно одна длина волны — немыслимо, чтобы в кольцевой стоячей волне содержалась только часть длины волны, — которая должна определить минимальный размер, до которого можно сжать атом. (Соответствующее ограничение для простейшей стоячей волны остается справедливым и при замене циркулярных «орбит» более общими картинами.)
Некоторый смысл приобретает и принцип Паули: посадите несколько тождественных электронов на одну и ту же «орбиту» — картины их стоячих волн сложатся в одну-единственную картину, и тогда мы можем ожидать, что обнаружим один электрон вместо нескольких[203]
.Новая атомная теория
Мощный аппарат был развит Шредингером. Исходя из дебройлевского квантово-волнового постулата, он составил общее волновое уравнение (см. т. 2, стр. 588) для электронов. Затем он посмотрел, какие решения в форме стоячих волн должны соответствовать полю кулоновских сил, меняющихся по закону обратных квадратов внутри атома. Это аналогично следующему: определить скорость волны вдоль натянутой струны (см,