Читаем Физика для всех. Движение. Теплота полностью

Какие же звуковые колебания воспринимаются человеком на слух? Оказывается, ухо способно воспринимать лишь колебания, лежащие примерно в интервале от 20 до 20 000 Гц. Звуки с большой частотой мы называем высокими, с малой частотой – низкими.

Какие же длины волн соответствуют предельным слышимым частотам? Так как скорость звука примерно равна 300 м/с, то по формуле = сТ= с/ находим, что длины слышимых звуковых волн лежат в пределах от 15 м для самых низких тонов до 3 см для самых высоких.

Каким же образом мы «слышим» эти колебания?

Работа нашего органа слуха до сих пор не выяснена до конца. Дело в том, что во внутреннем ухе (в улитке – канале длиной несколько сантиметров, заполненном жидкостью) имеется несколько тысяч чувствительных нервов, способных воспринимать звуковые колебания, передающиеся в улитку из воздуха через барабанную перепонку. В зависимости от частоты тока сильнее всего колеблется та или иная часть улитки. Хотя чувствительные нервы расположены вдоль улитки так часто, что возбуждается сразу большое их число, человек (и животные) способен – особенно в детстве – различать изменения частоты на ничтожные ее доли (тысячные доли). Каким образом это происходит, до сих пор точно не известно. Ясно только, что важнейшую роль здесь играет анализ в мозгу раздражений, приходящих от множества отдельных нервов. Придумать механическую модель, которая – при той же конструкции – столь же хорошо различала бы частоту звука, как и ухо человека, пока еще не удалось.

Иные люди обладают абсолютным слухом: вы возьмете на рояле сложный аккорд, а слушатель скажет, какие клавиши вы ударили. Значит, его ухо способно разлагать сложный звук на его гармонические составляющие.

<p>Музыка</p>

Отличие музыкального звука от шума уже иллюстрировалось кривыми звукового давления. Простой музыкальный тон создается периодическим колебанием определенной частоты. Сложные звуки представляют собой сочетания чистых тонов.

Оркестр музыкантов воспроизводит почти все слышимые частоты. Диапазон рояля охватывает тона с частотами примерно от 25 до 4000 Гц.

Не все комбинации звуков доставляют удовольствие слушающему. Оказывается, приятное ощущение создают такие звуки, частоты колебаний которых находятся в простых отношениях. Если звуковые частоты находятся в отношении 2 : 1, то говорят об октаве, если 5 : 4 – о большой терции, отношение 4 : 3 дает кварту, а 3 : 2 – квинту. Ощущение благозвучности теряется, если частоты звуковых колебаний нельзя представить такими простыми отношениями. Тогда музыканты говорят о диссонансе. Ухо хорошо ощущает сочетания различных тонов. Поэтому люди даже с посредственным слухом чувствительны к диссонансам.

При помощи бесклавишных инструментов – типа скрипки – музыкант может взять любой тон и дать звучание любому сочетанию тонов.

В таком инструменте, как рояль, дело обстоит иначе. Струны рояля настроены на определенные частоты, удар о клавиши не может изменить тональности звука. Клавиатура рояля включает семь полных октав. Нижнее «до» дает тон с частотой 32,64 Гц, а верхнее – с частотой 32,64 x 2 7 4178 Гц. Проблема состоит в том, как разделить октавы, т.е. какие промежуточные тона следует ввести, чтобы удовлетворить двум условиям. Во-первых, частоты должны находиться в наивозможно простых отношениях. Во-вторых, надо разделить октаву на равные интервалы (отношения между частотами), так как только в этом случае можно играть одну и ту же мелодию, начиная с любой ноты октавы (та же мелодия в другом тоне). Строго говоря, эти два требования противоречивы. Приближенно они осуществляются при использовании так называемого темперированного строя.

Посмотрим, что получится, если разделить октаву на 12 равных интервалов. Каждый из этих интервалов будет равен 2 1/12= 1,059. Это значит, что отношение двух соседних тонов будет равно этому числу. Выпишем теперь следующие цифры:

К полному своему удовлетворению музыкант замечает, что арифметика решает его задачу: октава разделена на строго равные интервалы, и в то же время отношения многих гонов весьма близки к отношениям простых чисел. Мы находим здесь и квинту (7), и кварту (5), и большую терцию (4), так как приблизительно 1,498 3/2; 1,260 5/4, а 1,335 4/3. Превосходно обстоит дело и в других случаях, где разница не превосходит 1 %: 1,414 7/5; 1,122 9,8; 1,587 8/5; 1,682 5/3; 1,888 17/9, и только первый интервал 1,059 18/17 дает явный диссонанс.

Небольшие отклонения от чистого строя (т.е. такого, в котором отношения частот в точности равны отношению целых чисел) для слуха мало заметны, и темперированный строй рояля получил распространение.

<p>Тембр звука</p>

Вы видели, как настраивают гитару – струну натягивают на колки. Если длина струны и степень натяжения подобраны, то струна будет издавать, если ее тронуть, вполне определенный тон.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука