Мы пояснили выше, что удобным графическим приемом описания силовых линий электрического поля является введение в обиход силовых линий. Направление электрических силовых линий указывало, куда отклоняется положительный заряд. Густота соответствовала величине силы. Аналогичным образом можно поступить и при описании магнитного поля. Конец свободно поворачивающейся магнитной стрелки укажет направление силовых линий.
Ну, а что же принять за меру «интенсивности» магнитного поля? Можно, конечно, измерять с помощью простого устройства момент силы, действующий на магнитную стрелку. Но, пожалуй, стоит поискать другой способ. Ведь магнитная стрелка своего — рода «вещь в себе». Проводя опыты с магнитной стрелкой, мы должны одновременно искать меру «интенсивности» магнитного поля и меру, характеризующую стрелку. Такой ситуации физики предпочитают избегать. Лучше погнаться сначала за одним зайцем, а потом за другим.
Итак, сохраним пока что за магнитной стрелкой функцию определения рисунка силовых линий. А для введения количественной меры «интенсивности» магнитного поля обратимся к одному из опытов Ампера, который еще в 1820 г. обнаружил, что контур тока ведет себя очень похоже на магнитную стрелку. А именно, контур тока поворачивается в магнитном поле, причем нормаль к его плоскости смотрит туда же, куда и магнитная стрелка, т. е. вдоль силовых линий. Роль северного полюса играет та сторона контура тока, смотря на которую мы видим ток идущим против часовой стрелки.
В отличие от магнитной стрелки, контур тока не является объектом, Который непонятно как характеризовать. Свойства контура тока однозначно определяются силой тока, площадью и направлением нормали к площади. Надо думать, что такой контур явится не плохим прибором для прощупывания магнитного поля.
Итак, мы решаем принять за меру «интенсивности» магнитного поля вращательный момент, действующий на контур тока. Не следует думать, что такой прибор менее удобен, чем магнитная стрелка. Хороший экспериментатор может изготовить контур крошечной площади, придумает простой метод уравновешивания поворота, который совершает поле, сжатием калиброванной пружины.
Прежде всего нам нужно выяснить поведение разных пробных контуров в какой-то определенной точке неизменного магнитного поля.
Результат этого исследования таков: момент силы пропорционален произведению силы тока на площадь. Значит пробный контур характеризуется не силой тока и площадью самими по себе, а их произведением.
Кроме этого произведения нам надо знать, как расположена нормаль контура по отношению к направлению поля. Ведь контур ведет себя наподобие магнитной стрелки. Поэтому, если установить контур так, чтобы его положительная нормаль (т. е. вектор, выходящий с северной стороны) смотрела вдоль силовых линий, то он в этом положении и останется (момент силы равен пулю) (рис. 3.1, внизу). Если расположить его так, чтобы нормаль была перпендикулярна к силовым линиям, то момент силы будет максимальным (рис. 3.1, вверху).
Из всего сказанного следует целесообразность введения нового понятия. Понятия, как мы поймем ниже, очень важного. Мы будем характеризовать контур тока вектором
M
= I∙S.Вектору
Итак, мы обладаем прибором, с помощью которого можно измерять поле. Удобнее всего измерять максимальный момент силы, действующий на пробный контур.
Переходя от одной точки поля к другой или меняя поле за счет перемещения его источников или изменяя силы токов, создающих поле, мы будем получать все время различные значения момента пары сил
N
= В∙М,где
Она называется магнитной индукцией. Итак, магнитная индукция равна максимальному моменту силы, действующему на пробный контур с единичным магнитным моментом.
Густоту силовых линий, т. е. их число, приходящееся на единицу площади, мы и примем пропорциональной величине