Читаем Физика для всех. Книга 3. Электроны полностью

В том, что действие имеется, и притом весьма немалое, убедиться донельзя просто: достаточно поднести самый обычный школьный магнит к электронному лучу, созданному электронной пушкой. Светящееся пятно на экране сместится и будет менять место на экране в зависимости от положения магнита.

От качественной демонстрации явления можно перейти к количественному исследованию, и тогда окажется, что величина силы, действующей со стороны магнитного поля В на электрон, движущийся в поле со скоростью v под прямым углом к силовым линиям, равна

F = evB,

где е заряд частицы (закон, конечно, справедлив не только для электронов, но и для любых заряженных частиц).

А вот если частица движется вдоль силовой линии магнитного <поля, то поле на нее не действует! Читателю, знающему тригонометрию, нетрудно сообразить, как написать выражение силы для случая движения под некоторым углом к полю. Мы не станем загромождать текст формулами, которые нам не понадобятся в дальнейшем.

Но еще ничего не сказано о направлении силы. А это крайне важно. Опыт показывает, что сила перпендикулярна как направлению движения частицы, так и направлению индукции. Или иначе: перпендикулярна плоскости, проходящей через вектора v и В. Но этим ведь еще не все сказано. У каждой медали две стороны. В чем они отличны? В направлении поворота, совмещающего один вектор с другим. Если поворот вектора и к вектору В на угол, меньший 180°, мы видим происходящим против часовой стрелки, то эту сторону называют положительной.

Простые векторные схемы, изображенные слева на рис. 3.3, показывают, что положительно заряженная частица отклоняется в сторону положительной нормали. Электрон отклоняется в обратную сторону.



Теперь поглядите, к какому интересному результату приводит этот закон для электрона, влетевшего в постоянное магнитное поле под прямым углом (рис. 3.3 справа). Сообразите: какую траекторию будет описывать электрон? Ну, конечно, он будет двигаться по окружности. Сила магнитного поля является центростремительной силой, и мы сразу же вычислим радиус окружности, приравнивая mv2/r и еvВ. Итак, радиус траектории равен.

r = mv/eB.

Обратите внимание на то, что по поведению частицы вы можете вычислить ее свойства. Но опять та же история, с которой мы столкнулись, изучая движения частицы в электрическом поле. Не удается определить отдельно электрический заряд и отдельно массу частицы!

Опыт приводит нас и в этом случае к величине отношения e/m.

Итак, частица движется по окружности, если ее скорость направлена под прямым углом к магнитному полю; частица движется по инерции, если ее скорость направлена вдоль магнитного поля. Ну, а в общем случае? Ваш ответ, конечно, уже готов. Частица движется по спирали, осью которой является силовая линия. Спираль будет состоять из тесно или редко навитых витков, в зависимости от начального угла влета электрона в магнитное поле.

Раз магнитное поле действует на движущуюся частицу, то оно должно оказывать силу и на каждый кусочек провода, по которому течет ток. Рассмотрим «отрезок» электронного луча длиной l. Пусть на этом отрезке умещается n частиц. Сила, действующая на провод такой же длины, по которому движется столько же частиц с такой же скоростью, будет равна nevB. Сила тока равняется полному заряду, проходящему через провод в единицу времени. Время τ, за которое рассматриваемые электроны пробегут путь l, равно

τ = l/v

То есть силу тока можно записать так:

I = ne/

τ

Подставляя скорость

v = Il/ne

из этого выражения в формулу для силы, действующей на «отрезок» электронного луча, мы и найдем силу, которая действует на проводник длиной l. Вот это выражение:

FIlВ.

Оно справедливо только для случая, когда провод перпендикулярен полю.

Направление отклонения провода, по которому протекает ток, можно определить с помощью схемы, показанной на рис. 3.3.

Из уважения к исследователям, работавшим в девятнадцатом веке, я привожу рис. 3.4.



Впрочем, рисунок представляет не только академический интерес. Он помогает запомнить правило отклонения токов. Рисунок показывает, как сложится собственное поле тока (идущего «от нас») с внешним полем. Результат сложения показан справа. Если представлять себе силовые линии как натяжения эфирной материи (а такая точка зрения была широко распространена в прошлом веке), то направление смещения проводника получает наглядную интерпретаций: проводник просто выталкивается полем.

Покажем теперь, что действие магнитного поля на движущийся заряд и на отрезок тока — это то же самое явление, с которого мы начали рассмотрение действий магнитного поля.

Вернемся к рис. 3.1. На рисунке показаны силы, действующие на контур тока. На участки провода, идущие вдоль силовых линий, силы не действуют, на другие два участка действует пара сил, и из рисунка ясно, что момент этой пары как раз и равен произведению силы на плечо:

N = IlB= ISВ = MB.

Таким образом, выражение для момента силы как произведения магнитного момента контура на величину магнитной индукции прямо вытекает из формулы силы, действующей на заряд.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука