Из законов Максвелла логика и математика вытягивают следствия. Эти следствия могли оказаться верными, а могли бы и не подтвердиться на опыте. Физическая теория входит в науку только после ее экспериментальной проверки. Путь становления теории электромагнитного поля: от разрозненных фактов к общим гипотезам, от гипотез к следствиям и последний этап — эксперимент, который говорит свое решающее слово, — единственная правильная дорога естествоиспытателя. На примере законов электромагнитного поля, эта дорога прослеживается особенно четко.
Поэтому мы и остановимся детально на опытах Герца, которые и сегодня помогают преподавателю показать школьнику или студенту, как создается уверенность ученого в справедливости законов природы.
Историю придется начать с 1853 г., когда знаменитый английский физик Кельвин математически доказал, что при разряде конденсатора через катушку самоиндукции в цепи возникают электрические колебания: заряд на обкладках конденсатора, напряжение на любом участке цепи, сила тока — все эти величины будут меняться по закону гармонического колебания. Если считать, что сопротивление в цепи ничтожное, то эти колебания будут продолжаться вечно.
На рис. 5.5 изображена картинка, поясняющая явления, которые происходят в этом так называемом колебательном контуре.
В начальный момент времени конденсатор заряжен. Как только цепь будет, замкнута, по ней потечет ток. Через четверть периода конденсатор будет полностью разряжен. Его энергия 1
/2Электрические колебания продолжались бы до бесконечности, если бы не неизбежное сопротивление току. Из-за него при каждом периоде энергия будет теряться и колебания, уменьшаясь по амплитуде, быстро затухнут.
Бросающаяся в глаза аналогия с колебаниями груза на пружине позволяет нам обойтись без алгебраического рассмотрения процесса и сообразить, каков будет период колебаний в таком контуре. (Читателю надо освежить в памяти соответствующие страницы первой книги.) Действительно, достаточно очевидно, что электрическая энергия конденсатора эквивалентна потенциальной энергии сжатой пружины, а магнитная энергия катушки — кинетической энергии грузика.
Сопоставляя аналогичные величины, мы «выводим» формулу периода электрических колебаний, происходящих в контуре: 1
/2Теперь попробуем угадать ход мыслей Герца, который поставил перед собой задачу, не выходя за пределы лаборатории, доказать существование электромагнитных волн, распространяющихся со скоростью 300 000 км/с. Итак, требуется получить электромагнитную волну длиной порядка 10 м. Если Максвелл прав, то для этого нужно, чтобы электрический и магнитный векторы колебались бы с частотой 3∙108
герц… простите — обратных секунд. Ведь в то время Герц не знал, что его имя будет увековечено названием единицы частоты.С чего же начать? Прежде всего, поскольку колебания затухающие, надо создать устройство, которое возобновляло бы процесс после того, как ток прекратится. Это сделать нетрудно. Схема показана на рис. 5.6.
На первичную обмотку трансформатора
Но частота должна быть высокой. Что для этого надо сделать? Уменьшить самоиндукцию и уменьшить емкость. Как? Заменяем катушку прямым проводом, а пластины конденсатора начинаем раздвигать и уменьшать их площадь. Во что же вырождается колебательный контур? Да от него просто ничего не остается: два стержня, заканчивающиеся шариками, между которыми проскакивает искра.
Так Герц и пришел к идее своего вибратора или осциллятора, который может служить как источником, так и приемником электромагнитных волн.
Предсказать заранее, чему будут равны индуктивность и емкость такого своеобразного «контура», от которого остались в полном смысле слова рожки да ножки, Герцу было трудно. Индуктивность и емкость вибратора не сосредоточены в одном месте цепи, а распределены вдоль стержней. Теория нужна другая.