Читаем Физика для всех. Книга 3. Электроны полностью

Из законов Максвелла логика и математика вытягивают следствия. Эти следствия могли оказаться верными, а могли бы и не подтвердиться на опыте. Физическая теория входит в науку только после ее экспериментальной проверки. Путь становления теории электромагнитного поля: от разрозненных фактов к общим гипотезам, от гипотез к следствиям и последний этап — эксперимент, который говорит свое решающее слово, — единственная правильная дорога естествоиспытателя. На примере законов электромагнитного поля, эта дорога прослеживается особенно четко.

Поэтому мы и остановимся детально на опытах Герца, которые и сегодня помогают преподавателю показать школьнику или студенту, как создается уверенность ученого в справедливости законов природы.

Историю придется начать с 1853 г., когда знаменитый английский физик Кельвин математически доказал, что при разряде конденсатора через катушку самоиндукции в цепи возникают электрические колебания: заряд на обкладках конденсатора, напряжение на любом участке цепи, сила тока — все эти величины будут меняться по закону гармонического колебания. Если считать, что сопротивление в цепи ничтожное, то эти колебания будут продолжаться вечно.

На рис. 5.5 изображена картинка, поясняющая явления, которые происходят в этом так называемом колебательном контуре.



В начальный момент времени конденсатор заряжен. Как только цепь будет, замкнута, по ней потечет ток. Через четверть периода конденсатор будет полностью разряжен. Его энергия 1/2 q2/C перейдет в энергию магнитного поля катушки. Сила тока в этот момент будет максимальна. Ток не прекратится, а будет продолжать идти в том же направлении, постепенно уменьшая свою силу. Через полпериода сила тока обратится в нуль, магнитная энергия 1/2 LI2 пропадет, а конденсатор полностью зарядится и возвратит свою энергию. Однако напряжение сменит знак. Далее процесс повторится, так сказать, в обратном направлении. Через некое время Т (период колебания) все вернется к исходному состоянию и процесс начнется снова.

Электрические колебания продолжались бы до бесконечности, если бы не неизбежное сопротивление току. Из-за него при каждом периоде энергия будет теряться и колебания, уменьшаясь по амплитуде, быстро затухнут.

Бросающаяся в глаза аналогия с колебаниями груза на пружине позволяет нам обойтись без алгебраического рассмотрения процесса и сообразить, каков будет период колебаний в таком контуре. (Читателю надо освежить в памяти соответствующие страницы первой книги.) Действительно, достаточно очевидно, что электрическая энергия конденсатора эквивалентна потенциальной энергии сжатой пружины, а магнитная энергия катушки — кинетической энергии грузика.

Сопоставляя аналогичные величины, мы «выводим» формулу периода электрических колебаний, происходящих в контуре: 1/2 q2/C — аналог 1/2 k∙х2; 1/2 LI2 — аналог 1/2 mv2k — аналог 1/С; L — аналог m. Значит, частота колебания v = 1/2π∙√(LC), поскольку для механического колебания соответствующая формула имеет вид:


Теперь попробуем угадать ход мыслей Герца, который поставил перед собой задачу, не выходя за пределы лаборатории, доказать существование электромагнитных волн, распространяющихся со скоростью 300 000 км/с. Итак, требуется получить электромагнитную волну длиной порядка 10 м. Если Максвелл прав, то для этого нужно, чтобы электрический и магнитный векторы колебались бы с частотой 3∙108 герц… простите — обратных секунд. Ведь в то время Герц не знал, что его имя будет увековечено названием единицы частоты.

С чего же начать? Прежде всего, поскольку колебания затухающие, надо создать устройство, которое возобновляло бы процесс после того, как ток прекратится. Это сделать нетрудно. Схема показана на рис. 5.6.



На первичную обмотку трансформатора Т подается переменное напряжение. Как только оно достигнет пробивного напряжения между шариками, подключенными ко вторичной обмотке, тут же проскочит искра. Она-то и замыкает колебательный контур К, играя роль ключа, и в контуре с более или менее высокой частотой пробежит десяток колебаний с уменьшающейся амплитудой.

Но частота должна быть высокой. Что для этого надо сделать? Уменьшить самоиндукцию и уменьшить емкость. Как? Заменяем катушку прямым проводом, а пластины конденсатора начинаем раздвигать и уменьшать их площадь. Во что же вырождается колебательный контур? Да от него просто ничего не остается: два стержня, заканчивающиеся шариками, между которыми проскакивает искра.

Так Герц и пришел к идее своего вибратора или осциллятора, который может служить как источником, так и приемником электромагнитных волн.

Предсказать заранее, чему будут равны индуктивность и емкость такого своеобразного «контура», от которого остались в полном смысле слова рожки да ножки, Герцу было трудно. Индуктивность и емкость вибратора не сосредоточены в одном месте цепи, а распределены вдоль стержней. Теория нужна другая.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука