Читаем Физика для всех. Книга 3. Электроны полностью

Физикам приходится иметь дело с электромагнитным излучением огромного диапазона. Электромагнитное излучение тока городской частоты абсолютно ничтожно. Практическая возможность уловить электромагнитное излучение начинается от частот порядка десятков килогерц, т. е. длин волн, равных сотням километров. Наиболее короткие волны имеют длину порядка десятитысячных долей микрометра, т. е. частоты порядка миллиардов гигагерц.

Радиоволнами называют то электромагнитное излучение, которое создается электротехническими средствами, т. е. за счет колебания электрических токов. Самые короткие длины радиоволн — это сотые доли миллиметра.

От нескольких сотен микрометров и ниже простирается область длин волн излучения, возникающего за счет энергетических переходов внутри молекул, внутри атомов и внутри атомных ядер. Этот диапазон, как мы видим, существенно перекрывается с радиодиапазоном.

Видимое световое излучение занимает узкий участок. Его пределы — это 0,38—0,74 микрометра. Более длинноволновое излучение, полученное не радиотехническими способами, называют инфракрасным, а более коротковолновое — ультрафиолетовым вплоть до длин около 0,1 микрометра.

Электромагнитное излучение, получаемое в рентгеновских трубках, перекрывается с областью ультрафиолетовых волн и доходит до 0,01 микрометра, где в свою очередь перекрывается с областью гамма-лучей.

Последние возникают при ядерном распаде, ядерных реакциях и столкновениях между элементарными частицами.

Основной характеристикой любого электромагнитного излучения является его спектр. Спектром называют график, на котором по вертикали отложена интенсивность (т. е. энергия, приходящаяся в единицу времени на единицу площади), а по горизонтали — длина волны или частота. Самым простым спектром является монохроматическое («одноцветное») излучение. Его график состоит из одной линии очень малой ширины (рис. 5.8, вверху).



Степень монохроматичности линии характеризуют отношением λλ. Радиостанции дают почти монохроматическое излучение. Например, для коротковолновой станции, работающей в диапазоне 30 м, λλ равно примерно 1000.

Возбужденные атомы, например атомы газов в лам-ах дневного света (возбуждение происходит за счет соударения положительно и отрицательно заряженных частиц, движущихся к аноду и катоду), дают спектр, состоящий из множества монохроматических линий с относительной шириной (100 000)-1. В магнитном резонансе наблюдают линии, имеющие ширину до 10-7.

Строго говоря, сплошных спектров не существует. Однако если линии перекрываются, то опыт приводит к кривой интенсивности, показанной на том же рисунке внизу.

Сведения об электромагнитном спектре можно получать как исследуя излучение, так и изучая поглощение. Вообще говоря, оба опыта несут одну и ту же информацию. Это ясно из основного закона квантовой физики. В случае излучения система переходит с верхнего энергетического уровня на нижний, в случае поглощения — с нижнего уровня на верхний. Но разность энергий, которая определяет частоту излучения или поглощения, будет одной и той же. Какой спектр исследовать, излучение или поглощения, — это вопрос удобства.

Характеризуя спектр излучения, мы можем, разумеется, пользоваться как волновым, так и корпускулярным языком. Пользуясь волновым аспектом излучения, мы говорим, что интенсивность пропорциональна квадрату амплитуды волны. Рассматривая излучение как поток частиц, мы подсчитываем интенсивность как число фотонов.

Еще раз повторим, что нас ни в какой мере не должно смущать поочередное пользование обоими аспектами излучения. Излучение но похоже ни на волну, ни на поток частиц. Обе картины — это всего лишь модели, которыми удобно пользоваться при объяснении тех или иных явлений.

Мы не привели шкалу электромагнитных волн, но сказали достаточно отчетливо, что названия различных ее участков в некоторой степени условны, и, во всяком случае, можно столкнуться со случаями, когда волны одной и той же длины будут называться по-разному в зависимости от способа их получения.

Сейчас шкала электромагнитных волн сплошная. Нет таких участков, которые не удавалось бы получить тем или иным способом.

Но перекрывания инфракрасных волн с радиоволнами, гамма-лучей с рентгеновскими и т. д. были открыты сравнительно недавно. Долгое время существовал пробел между короткими радиоволнами и инфракрасными волнами. Волны длиной 6 мм получил в 1895 году замечательный русский физик Петр Николаевич Лебедев, а тепловые (инфракрасные) волны длиною до 0,34 мм — Рубенс.

В 1922 году А. А. Глаголева-Аркадьева ликвидировала и этот пробел, получив неоптическим способом электромагнитные волны длиной от 0,35 мм до 1 см.

В настоящее время волны этой длины получаются радиотехниками без труда. Но в то время автору пришлось потратить не мало остроумия и изобретательности для того, чтобы создать прибор, который ею был назван массовым излучателем. Источником электромагнитного излучения явились металлические опилки, взвешенные в трансформаторном масле. Через эту смесь пропускался искровой разряд.

Глава 6

Радио

СТРАНИЧКИ ИСТОРИИ


Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука