Читаем Физика для всех. Книга 4. Фотоны и ядра полностью

Интеллектуальная необходимость в существовании такой модели привела Эйнштейна к следующему фундаментальному заключению. Геометрия Евклида, которой мы с успехом пользуемся в обыденной жизни, несправедлива, когда речь идет о непредставимо колоссальных расстояниях, с которыми мы сталкиваемся при изучении звездного мира. Отказ от геометрии Евклида означает отказ от наглядных моделей Вселенной. Ну что же, не в первый раз нам расставаться с возможностью наглядно представить себе окружающий нас мир.

Простившись с геометрией Евклида, мы можем предложить модель Вселенной, которая одновременно является замкнутой и в то же время не имеет ни границ, ни центра. В такой модели все точки пространства будут равноправными.

На первый взгляд может показаться, что Эйнштейн требует от нас очень большой жертвы. Мы так привыкли, что две параллельные линии никогда не пересекаются, что сумма квадратов катетов равна квадрату гипотенузы. Привыкли… Но, позвольте, вспомните уроки географии. На глобусе, изображающем земной шар, линии широт параллельны. А на географической карте? Вы вправе спросить, на карте какого типа. Ибо географические карты строятся различными способами. Если изобразить земной шар в виде двух полушарий, то параллели перестанут быть параллельными. Если прибегнуть к так называемой прямоугольной проекции, то расстояния между широтами перестанут быть равными. Какая уж тут геометрия Евклида!

Если желаете, то можете убедиться, что теорема Пифагора потерпела крах. На карте важнейших авиалиний я изобразил треугольник (рис. 7.2) Москва-Кейптаун-Лондон. Выбрал его потому, что случайно он на карте в точности прямоугольный. Значит, сумма квадратов катетов должна равняться квадрату гипотенузы. Как бы не так. Считайте: расстояния Москва-Лондон 2490 км, Москва-Кейптаун 10130 км и Лондон-Кейптаун 9660 км. Не работает теорема, не годится наша геометрия для географической карты.



Законы геометрии на плоскости, изображающей земной шар, отличаются от «обычных».

Рассматривая географическую карту полушарий, мы видим, что у нее есть «края». Но ведь это иллюзия. На самом деле, двигаясь по поверхности земного шара, мы никогда не доберемся до несуществующего «края Земли».

Существует анекдот. Маленький сын Эйнштейна спрашивает отца: «Папа, почему ты так знаменит?» Отец отвечает: «Мне повезло, я первый обратил внимание на то, что жук, ползая по глобусу, может обогнуть его по экватору и вернуться в исходную точку». Конечно, в такой форме открытия нет. Но перенести это соображение на трехмерное пространство Вселенной; утверждать, что она конечна и замкнута наподобие двумерной поверхности, ограничивающей глобус; сделать из этого вывод, что все точки Вселенной совершенно равноправны в том же смысле, что и все точки поверхности глобуса, — разумеется, это требует исключительной интеллектуальной смелости.

Отсюда такое заключение. Если мы, земляне, наблюдаем, что все галактики от нас разбегаются, то и житель планеты любой звезды будет видеть ту же картину. Он придет к тем же заключениям о характере движения звездного мира и измерит те же самые скорости галактик, что и обитатель Земли.

Модель Вселенной, предложенная Эйнштейном в 1917 г., является естественным следствием разработанной им так называемой общей теории относительности (ту часть теории, которую мы изложили в гл. 4, называют специальной).

Однако Эйнштейн не предполагал, что замкнутая Вселенная может изменять свои размеры. Это показал в 1922–1924 гг. советский ученый Александр Александрович Фридман (1888–1925). Оказалось, что теория требует либо расширения Вселенной, либо чередующихся расширений и сжатий. Во всяком случае она не может быть статической. Мы имеем право принять любую из этих двух точек зрения, т. е. либо предположить, что мы живем сейчас в эпоху расширения Вселенной, которой предшествовали чередовавшиеся сжатия и расширения, либо допустить, что Вселенная некое время тому назад (его можно рассчитать, оно оказывается равным нескольким десяткам миллиардов лет) представляла собой «космическое яйцо», которое взорвалось и с тех пор расширяется.

Надо отчетливо понимать, что вариант начального взрыва вовсе не связан с принятием сотворения мира. Может быть попытки заглянуть слишком далеко вперед и назад, а также на слишком большие расстояния неправомерны в рамках существующих теорий.

Рассмотрим в соответствии со схемой, представляющейся сейчас разумной, такой простой пример. Измеряем красное смещение спектральных линий излучения, приходящего к нам от далеких галактик. Пользуясь формулой Доплера, оцениваем скорости движения галактик. Чем дальше от нас галактики, тем быстрее они движутся. Телескоп сообщает скорости разбегания все более и более далеких галактик: десять тысяч километров в секунду, сто тысяч километров… Однако этому возрастанию значений скорости должен наступить предел. Ведь если галактика движется от нас со скоростью света, то мы ее в принципе не можем увидеть: частота света, вычисляемая по формуле Доплера, обратится… в нуль. От такой галактики свет до нас не доходит.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное