Читаем Физика для всех. Книга 4. Фотоны и ядра полностью

Каковы же максимальные расстояния, которые мы сумеем измерить, когда в нашем распоряжении окажутся сверхзамечательные приборы? Конечно, оценка может быть сугубо приблизительной. Во всяком случае жаловаться на то, что мы не можем заглянуть достаточно далеко, уж никак не приходится: число о котором идет речь, измеряется миллиардами световых лет!

Что же касается еще больших расстояний, то разговор о них, вероятно, лишен содержания. Можно сказать и так: в рамках сегодняшних представлений разговор о расстояниях, больших миллиардов световых лет, лишен физического смысла, поскольку нельзя предложить способ измерения.

Дело обстоит здесь вполне аналогично той ситуации, которая возникла с траекторией электрона: ее никак нельзя измерить просто потому, что представление о ней не имеет смысла.


ОБЩАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ


Специальная теория относительности привела к необходимости ввести поправки в законы механики для тел, движущихся со скоростями, близкими к скорости света. Общая теория относительности вносит поправки в привычные представления о пространстве, когда речь идет об огромных расстояниях. Именно поэтому разговор об этой теории уместен в главе, посвященной физике Вселенной.

Общая теория относительности покоится на следующем принципе: нет таких экспериментов, с помощью которых можно было бы отличить движение тел под действием поля тяготения от движения в соответствующим образом подобранной неинерциальной системе отсчета.

Рассмотрим несколько простейших примеров. Мы находимся в лифте, который падает вниз с ускорением а. Выпустим из руки шарик и сообразим, какой характер будет иметь его падение. Как только шарик будет выпущен, начнется, с точки зрения инерциального наблюдателя, свободное падение с ускорением g. Так как лифт падает с ускорением то ускорение по отношению к полу лифта будет (g — а). Наблюдатель, находящийся в лифте, может описать движение падающего тела при помощи ускорения g' = ga. Иначе говоря, наблюдатель в лифте может не говорить об ускоренном движении лифта, «изменив» ускорение поля тяжести в своей системе.

Теперь сравним два лифта. Один из них неподвижно висит над Землей, а другой движется в межпланетной пустоте с ускорением а по отношению к звездам. Все тела в неподвижном над Землей лифте обладают способностью свободно падать с ускорением g. Но такой же способностью обладают тела внутри межпланетного лифта. Они будут «падать» с ускорением — а на «дно» лифта.

Выходит, что действие поля тяжести и проявления ускоренного движения неотличимы.

Поведение тела в ускоренно движущейся системе координат равнозначно поведению тела в присутствии эквивалентного поля тяжести. Однако эта эквивалентность может быть полной, если мы ограничим себя наблюдениями на небольших участках пространства. Действительно, представим себе «лифт» с линейными размерами пола в тысячи километров. Если такой лифт неподвижно висит над земным шаром, то явления в нем будут происходить иначе, чем в том случае, когда лифт будет двигаться с ускорением а по отношению к неподвижным звездам. Это ясно из рис. 7.3: в одном случае тела падают косо на дно лифта, в другом случае — отвесно.



Таким образом, принцип эквивалентности справедлив для тех объемов пространства, в которых поле можно считать однородным.

Принцип эквивалентности поля тяготения с нужным образом подобранной локальной системой отсчета приводит к важному выводу: поле тяготения связано с кривизной пространства и искажением хода времени.

Два наблюдателя заняты измерением расстояния и промежутков времени. Их интересуют события, происходящие на вращающемся диске. Один наблюдатель находится на диске, а другой неподвижен (по отношению к звездам). Впрочем, работает только тот исследователь, который является, так сказать, жителем диска. Неподвижный наблюдатель лишь следит за работой своего коллеги.

Первый опыт заключается в измерении радиального расстояния, т. е. расстояния между двумя предметами, установленными на одном и том же радиусе диска на разных расстояниях от центра. Измерение производится обычным способом, а именно: между концами интересующего исследователей отрезка укладывается сколько-то раз стандартная линейка. С точки зрения обоих исследователей, длина линейки, расположенной перпендикулярно направлению движения, одна и та же. Поэтому между нашими двумя исследователями не возникнут разногласия по поводу длины радиального отрезка.

Теперь житель диска приступает ко второму опыту. Он желает измерить длину окружности. Линейку приходится укладывать вдоль движения. Конечно, надо учитывать кривизну окружности. Поэтому измерение следует проводить при помощи небольшой линейки, так, чтобы длину касательного отрезка можно было приравнять длине дуги. Наблюдатели не станут спорить о том, сколько раз уложилась линейка по длине окружности. Но тем не менее их мнения по поводу длины окружности разойдутся. Ведь неподвижный наблюдатель будет считать, что линейка сократилась, поскольку в этом втором опыте она расположена вдоль движения.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное