Читаем Физика невозможного полностью

Проблема, однако, состоит в том, чтобы сфокусировать высокоэнергетические лучи и равномерно распределить их излучение по поверхности крошечного шарика. Первой серьезной попыткой лазерного термоядерного синтеза стала «Шива» — двадцатилучевая лазерная система, построенная в Ливерморской национальной лаборатории имени Лоуренса (LLNL) и запущенная в 1978 г. (Шива — многорукая богиня индуистского пантеона, которую напоминает многолучевая лазерная система.) Результаты работы лазерной системы «Шива» оказались обескураживающими; тем не менее с ее помощью удалось доказать, что лазерный термоядерный синтез технически возможен. Позже на смену «Шиве» пришел лазер «Нова», десятикратно превосходивший «Шиву» по мощности. Но и «Нова» оказалась не в состоянии обеспечить водородному шарику должное зажигание. Как бы то ни было, обе эти системы проложили путь к намеченным исследованиям на новой установке National Ignition Facility (NIF), сооружение которой началось в LLNL в 1997 г.

Предполагается, что работа NIF начнется в 2009 г. Эта чудовищная машина представляет собой батарею из 192 лазеров, которые выдают в коротком импульсе громадную мощность 700 трлн ватт (суммарный выход примерно 70 0000 крупных атомных энергоблоков). Это новейшая лазерная система, разработанная специально для полного термоядерного сжигания насыщенных водородом шариков. (Критики указывают также на ее очевидное военное значение — ведь такая система способна имитировать процесс детонации водородной бомбы; возможно, она позволит создать ядерное оружие нового типа — бомбу, основанную исключительно на процессе синтеза, для детонации которой уже не нужен урановый или плутониевый атомный заряд.)

Но даже система NIF, предназначенная для обеспечения процесса термоядерного синтеза и имеющая в своем составе самые мощные на Земле лазеры, не может хотя бы отдаленно сравниться по мощи с разрушительной силой Звезды смерти, известной нам по «Звездным войнам». Для создания подобного устройства нам придется поискать другие источники энергии.

Магнитное удержание для термоядерного синтеза

Второй метод, который в принципе могли бы использовать ученые для обеспечения Звезды смерти энергией, известен как магнитное удержание — процесс, при котором горячая водородная плазма удерживается на месте при помощи магнитного поля.

Именно этот метод, вполне возможно, послужит прототипом для первых коммерческих термоядерных реакторов. В настоящее время самый продвинутый проект этого типа — Международный термоядерный экспериментальный реактор (ITER, International Thermonuclear Experimental Reactor). В 2006 г. несколько стран (в том числе Европейский союз, Соединенные Штаты, Китай, Япония, Корея, Россия и Индия) решили построить такой реактор в Кадараше на юге Франции. В нем водород должен разогреваться до 100 млн градусов по Цельсию. Не исключено, что ITER станет первым термоядерным реактором в истории, которому удастся произвести энергии больше, чем потребить. Он рассчитан на производство 500 МВт мощности в течение 500 с (текущий рекорд составляет 16 МВт мощности в течение одной секунды). Планируется, что первая плазма будет получена в ITER к 2016 г., а полностью установка вступит в строй в 2022 г. Проект стоит 12 млрд долл. и является третьим по стоимости научным проектом в истории (после Манхэттенского проекта и Международной космической станции).

С виду установка ITER похожа на большой бублик, оплетенный снаружи громадными кольцами электрической обмотки; внутри бублика циркулирует водород. Обмотку охлаждают до состояния сверхпроводимости, а затем закачивают в нее гигантское количество электроэнергии, создавая магнитное поле, которое и удерживает плазму внутри бублика. Когда же электрический ток пропускают непосредственно через бублик, газ внутри его нагревается до звездных температур.

Причина, по которой ученые так заинтересованы в проекте ITER, проста: в перспективе он обещает создание дешевых источников энергии. Топливом для термоядерных реакторов служит обычная морская вода, богатая водородом. Получается, по крайней мере на бумаге, что термоядерный синтез может обеспечить нас дешевым и неистощимым источником энергии.

Так почему же у нас до сих пор нет реакторов термоядерного синтеза? Почему уже несколько десятилетий — с того момента, как в 1950-х гг. была разработана схема процесса — мы не можем добиться реальных результатов? Проблема в том, что равномерно сжать водородное топливо невероятно трудно. В ядрах звезд гравитация заставляет водород принимать идеальную сферическую форму, в результате чего газ прогревается чисто и равномерно.

Лазерный термоядерный синтез в установке NIF требует, чтобы лучи лазеров, воспламеняющие поверхность водородного шарика, были совершенно одинаковыми, а добиться этого чрезвычайно трудно. В установках с магнитным удержанием большую роль приобретает тот факт, что магнитное поле имеет северный и южный полюса; в результате равномерно сжать газ в правильную сферу чрезвычайно трудно.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги