Читаем Физика: Парадоксальная механика в вопросах и ответах полностью

Только в вакууме, например в трубке Ньютона (рис. 18), тяжелые и легкие тела – дробинка и перышко – будучи отпущенными вместе, падают одновременно. Автор подчеркивает, что для этого падающие предметы должны быть отпущены именно одновременно. Если же их отпускать порознь, то этот «постулат» равного времени падения легкого и тяжелого тел не соблюдается, по крайней мере, теоретически. Но об этом подробнее в следующем вопросе.

Рис. 18. Трубка Ньютона.


4.7. Вопрос. Когда говорят о падении тел друг на друга, например груза на Землю, учитывается ли, что оба тела движутся навстречу друг другу?

Ответ. Эта задача принципиально близка той, где рассматривается вращение небесных тел вокруг общего центра масс. Свободные тела не могут двигаться независимо друг от друга, так как они связаны силами взаимного тяготения. Если расположить два тела на каком-нибудь расстоянии друг от друга и отпустить их, т. е. позволить им свободно перемещаться без начальной скорости, они начнут сближаться друг с другом, пока не произойдет их соприкосновение. Если одно из этих тел – небесное, то говорят о падении тел на Землю, Луну, комету, астероид и т. д. При этом чем более сопоставимы по массе тела – падающее и то, на которое оно падает – тем соизмеримее их перемещения навстречу друг другу.

Что же считать в подобных случаях «быстротой» падения? Разумнее всего критерием быстроты падения считать время, прошедшее от начала падения до соприкосновения тел.

Если мы, как это описано практически во всех учебниках, отпускаем одномоментно два тела – легкое и тяжелое, то они упадут одновременно (в вакууме, конечно), потому что они оба, находясь вместе, одновременно притягивают к себе Землю или другой объект, на который они падают. Происходит как бы сближение всего двух тел, двух масс. Два падающих тела, более и менее массивное, находясь вместе, просто не могут упасть порознь. И тело, на которое падают вместе два других тела, передвигается навстречу сразу этим двум телам.

Если же опыт провести иначе – отпустить одно тело, измерить время падения, а затем заменить это тело на более или менее массивное, проделать тот же опыт еще раз, то результат будет различный. Чем массивнее падающее тело при постоянной массе тела, на которое оно падает, тем быстрее тела соприкоснутся, иначе говоря, тем быстрее упадет тело.

Если отвлечься от большой разности в массах (это уже количественная сторона вопроса), подобным же образом обстоит дело с падением обычных по массам тел на Землю. Если эти тела бросать поодиночке над одним и тем же местом на Земле (например, на экваторе или на полюсе, над океаном или над залежами тяжелых руд и т. д.) и измерять время падения, не забывая убирать упавшее тело куда-нибудь в космическую даль, то, чем массивнее падающее тело, тем быстрее оно «приземлится» с одной и той же высоты, и наоборот. Желательно, конечно, чтобы падающие тела были помассивнее, тогда современными средствами измерения времени можно было бы уловить разницу. Ну, а если на Землю будут падать, к примеру, планета Венера и в сравнении с ней пудовая гиря, то разница во времени падения будет ощутима и без часов!

Определим время падения одного тела на другое. Обозначим массу одного тела, например, планеты – М, а массу падающего груза – т. Как известно из закона всемирного тяготения, силы, действующие на эти тела, равны:

где G – гравитационная постоянная, равная 6,67?10-11Н?м2/кг2;

R – расстояние между центрами масс тел.

Считая для простоты ускорения тел постоянными (допустим, падение происходит с небольшой высоты), вычисляем их: ускорение планеты aпл = F/M, ускорение груза агр = F/m. Скорости планеты и груза vпл = aплt и vгр = aгрt, где t – время.

Скорость сближения этих тел (скорость падения):

при этом средняя скорость падения:

где vпад. к – конечная скорость падения.

Считая оба тела массивными точками, определим время падения:

Подставляя vпад. к, получим:

В знаменателе под корнем сумма масс тел, следовательно, чем больше масса падающего груза т при постоянной М, тем меньше время падения.

Приведем гипотетический пример. Расчет показывает, что если Луна падает на Землю с высоты 1000 км, то до соприкосновения этих тел пройдет примерно 700 с (рис. 19). Если же при всех прежних условиях увеличить массу Луны до массы Земли, то падение, или, точнее, взаимное сближение, будет длиться всего 500 с.

Рис. 19. Схема падения Луны на Землю.


4.8. Вопрос. В учебниках можно встретить тезис, что при падении тел с высоты в сопротивляющейся среде, например, воздухе, в первой фазе падения тело движется с ускорением, а во второй – равномерно. Может ли так быть, ведь характер физического процесса во время падения не меняется?

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное