Читаем Физика в примерах и задачах полностью

Если нижний шарик гораздо легче верхнего, т.е. m, верхний шарик остаётся практически неподвижным. В этом предельном случае формула (3) даёт правильное значение начальной скорости v0min=2gl, очевидное и из элементарных соображений. Если же m, то наличие лёгкого шарика m практически никак не сказывается на движении нити с тяжёлым шариком m (система как бы «не замечает» присутствия лёгкого шарика). При этом соединяющая шарики нить займёт горизонтальное положение лишь тогда, когда вся длинная нить отклонится до горизонтали, т.е. при v0min=2gL, где L - суммарная длина обеих нитей. Ясно, что формула (3) в этом случае неприменима, так как она получена в предположении, что верхняя нить всё время остаётся вертикальной.

10. Пуля пробивает шар.

Горизонтально летящая пуля массы m насквозь пробивает первоначально покоившийся шар массы M и вылетает из него со скоростью, вдвое меньшей первоначальной. Какая доля кинетической энергии пули превратилась во внутреннюю энергию?

Обозначим скорость пули до столкновения с шаром через v, а приобретаемую шаром скорость через V. По условию скорость пули на вылете из шара равна v/2, поэтому уравнение закона сохранения импульса в проекции на горизонтальное направление принимает вид

mv

=

MV

+

mv

2

.

(1)

Из этого уравнения сразу можно получить приобретаемую шаром скорость V:

V

=

mv

2M

.

Приращение внутренней энергии, т.е. выделяющееся при неупругом взаимодействии пули с шаром количество теплоты Q, можно найти с помощью закона сохранения энергии:

mv^2

2

=

MV

2

+

m(v/2)^2

2

+

Q

.

(3)

Подставляя сюда V из (2), находим

Q

=

mv^2

2

3

-

m

M

.

(4)

Так как начальная кинетическая энергия пули E=mv^2/2, то для искомого отношения Q/E из (4) получаем

Q

E

=

1

4

3

-

m

M

.

(5)

Но можно ли считать, что полученная формула даёт ответ на поставленный вопрос? Она выражает искомую величину через приведённые в условии данные, но ставить точку рано, полученный результат нужно ещё исследовать. Очевидно, что отношение Q/E должно быть положительным, поэтому напрашивается вывод, что формула (5) применима при m/M3. Пусть, например, отношение m/M=2. Тогда формула (5) даёт для Q/E значение 1/4 . Казалось бы, всё в порядке, поскольку Q/E получилось положительным и меньшим единицы. И тем не менее этот результат не имеет смысла при приведённых в условии задачи данных. Действительно, посмотрим на формулу (2). Из неё следует, что при m/M=2 скорость V=v: пробитый пулей насквозь шар летит со скоростью, вдвое превышающей скорость пули v/2! Получилась явная физическая бессмыслица. Уже в процессе решения после получения формулы (2) следовало бы обратить внимание на то, что, пробив шар насквозь, пуля может иметь скорость v/2 только при выполнении условия v/2V, т.е. при

m

M

1

.

(6)

Только в совокупности с условием (6) формула (5) даёт ответ на поставленный в данной задаче вопрос. Теперь ясно, что в зависимости от отношения масс m/M во внутреннюю энергию может превратиться от половины (при m->M) до трёх четвертей (при m->0) первоначальной кинетической энергии.

Теперь подумаем о том, имеет ли какой-нибудь смысл формула (5) при 1=m/M=3. Если m=M, то из формулы (2) следует, что V=v/2, т.е. шар и пуля имеют одинаковую скорость. Столкнувшиеся тела летят вместе, т.е. пуля застревает в шаре. В этом случае говорят об абсолютно неупругом ударе. Конечно, не следует думать, что абсолютно неупругий удар возможен только при m=M: здесь так получилось, потому что в условии задана конечная скорость, равная, v/2 Если же выполняется строгое неравенство 1m/M3, то после столкновения шар летит впереди пули со скоростью V, определяемой формулой (2): v/2V3v/2. При таком неупругом ударе во внутреннюю энергию переходит до половины первоначальной кинетической энергии. Наконец, если m/M=3, то, как видно из (4), Q=0, т.е. тепло вообще не выделяется: при ударе сохраняется механическая энергия. Это случай абсолютно упругого удара.

11. Выскальзывающая доска.

На конце доски длины L и массы M находится маленький брусок массы m (рис. 11.1). Доска может скользить без трения по горизонтальной плоскости. Коэффициент трения скольжения бруска о поверхность доски равен . Какую горизонтальную скорость v нужно толчком сообщить доске, чтобы она выскользнула из-под бруска?

Рис. 11.1. Доска мгновенно получает начальную скорость v

При сообщении доске горизонтальной скорости v резким толчком или ударом брусок не получает начальной скорости относительно земли, так как действующая на него со стороны доски сила трения не может превосходить mg и за короткое время удара не может сообщить бруску заметного импульса. После толчка в системе отсчёта, связанной с землёй, брусок движется равноускоренно, а доска - равнозамедленно.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука