Предположим, что граница квадрата
Ниже перечислены элементы, составляющие единичный отрезок, квадрат, куб и четырехмерный куб, а также их границы.
Число точек | Число отрезков прямых | Число квадратов | Число кубов | |
Одномерный отрезок | 1 | 0 | 0 | |
Двумерный квадрат | 1 | 0 | ||
Трехмерный куб | 1 | |||
Четырехмерный куб | ||||
Число вершин | Число ребер | Число граней (квадратов) | Число трехмерных граней (кубов) | |
Граница одномерного отрезка | 2 | 1 | 0 | 0 |
Граница двумерного квадрата | 4 | 4 | 1 | 0 |
Граница трехмерного куба | 8 | 12 | 6 | 1 |
Граница четырехмерного куба | 16 | 32 | 24 | 8 |
Приведенные выше рассуждения допускают непосредственное обобщение па случай единичного куба и более высоких размерностей.
Если одномерный отрезок неограниченно продолжить вправо за точку
Одномерный единичный отрезок отделен от остальной части одномерного пространства, в котором он лежит, двумя точками. Двумерный единичный квадрат отделен от остальной части двумерного пространства, в котором он расположен, четырьмя отрезками (сторонами). Трехмерный единичный куб отделен от остального пространства шестью квадратами. Аналогично четырехмерный единичный куб отделен от остальной части четырехмерного пространства, в котором он лежит, восемью кубами. Предположим, что мы хотим построить замкнутую фигуру любого числа измерений в пространстве того же числа измерений. Тогда в одномерном пространстве нам понадобятся для этого две точки, в двумерном пространстве — по крайней мере три прямые, в трехмерном пространстве — по крайней мере четыре плоскости и в четырехмерном пространстве — по крайней мере пять трехмерных пространств.
Так же как и в единичном отрезке, квадрате, кубе и четырехмерном кубе, из одной точки пространства в другую мы можем попасть, двигаясь вдоль фиксированных взаимно перпендикулярных направлений, число которых совпадает с размерностью пространства.
Время можно представить в виде одномерного пространства, ибо оно течет лишь в одном направлении из бесконечно далекого прошлого в бесконечно удаленное будущее (рис. 5). Настоящее время можно изобразить точкой, перемещающейся с постоянной скоростью по шкале времени (или неподвижной точкой, относительно которой равномерно перемещается шкала времени). Любого момента времени можно достичь, пройдя определенное расстояние (годы, месяцы и т. д.) от некоторой выбранной точки (начала новой эры).
Любая часть земной поверхности, если рассматривать ее как плоскость, представляет собой область двумерного пространства. Следуя по меридианам и параллелям, мы всегда можем добраться до любой точки земной поверхности. Примером трехмерного пространства может служить пространство, в котором находится наша Вселенная. Представить себе наглядно четырехмерное пространство невозможно.