Читаем Фон Нейман. Теория игр полностью

Фон Нейман читает лекцию о своей работе над вычислительными машинами в Американском философском обществе.

Впоследствии фон Нейман утверждал, что, напротив, перед математикой стоит риск вырождения. Он сравнил математику и физику. Последняя функционирует в гораздо более узких областях и имеет гораздо меньше ответвлений. Из этого вытекают два важных следствия. Во-первых, теоретический физик потенциально может иметь общие сведения, которые позволяют ему иметь представление по крайней мере о половине всего познаваемого в предмете его изучения, в то время как профессиональный математик, например сам фон Нейман, едва ли может надеяться на то, что знает хотя бы о четверти. А сегодня этот объем, несомненно, существенно сократился. Второй аспект относится к самой природе исследовательской работы. Перед лицом проблемы физик чувствует себя обязанным найти решение, так как обычно она тормозит развитие всей теории, и ученый не может обойти ее вниманием. Для математика же дела обстоят по-другому. Если он не может найти решение какой-либо проблемы, он просто отложит ее и перейдет к другой — математическая теория от этого не пострадает. Фон Нейман даже утверждал, что выбор конкретной задачи определяется исключительно эстетическими вкусами.

В конце статьи он предупреждал об опасности того, что математика может слишком далеко отойти от своих источников. Слишком узкая специализация абстрактной математики и ее постоянное отдаление от реальности могут привести к вырождению. Фон Нейман писал:

«В любом случае, если дело дойдет до этой точки, мне кажется, что единственным спасением будет возвращение к источнику: к введению более или менее эмпирических идей. Я убежден, что это необходимое условие для того, чтобы математика сохраняла свою свежесть и жизнеспособность, и что оно будет действенным и в будущем».

В наше время создается порядка 200 тысяч математических теорем в год. Разумеется, никто не в состоянии проверить даже малую часть тех истин, которые они предлагают. Прогнозы фон Неймана сбылись, причем в своей худшей части.

<p>Список рекомендуемой литературы</p></span><span>

Aspray, W .John von Neumann у los origenes de la computation modema, Barcelona, Gedisa, 1993.

Bell, E.T., Losgrandes matemdticos, Buenos Aires, Losada, 2010.

Boyer, C., Historia de la matemdtica, Madrid, Alianza Editorial, 2007.

Davis, M.D., Teoria deljuego, Madrid, Alianza Universidad, 1977.

Heims, S.J.,/. von Neumann у N. Wiener, Barcelona, Editorial Salvat, 1986.

Israel, G. у Millän Gasca, A., El mundo сото un juego matemdtico, Tres Cantos (Madrid), Nivola, 2001.

Kline, M., El pensamiento matemdtico de la Antigüedad a nuestros dias, Madrid, Alianza Universidad, 1999.

Mosteri'n, J., Los logicos, Madrid, Espasa Calpe, 2000.

Neumann, J. von, El ordenadory el cerebro, Barcelona, Antoni Bosch editor, 1999. —: Fundamentes matemdticos de la mecdnica cudntica, Madrid, Instituto de Matemäticas Jorge Juan, 1949.

Odifreddi, R, La matemdtica del siglo xx, Madrid, Katz Barpal Editores, 2006.

Pena, R., De Euclides a Java: Historia de los algoritmos у de los lenguajes de programation, Madrid, Nivola, 2006.

Poundstone, W., El dilema delprisionero, Madrid, Alianza, 2006.

Stewart, I., Historia de las matemdticos, Barcelona, Critica, 2008.

<p>Указатель</p></span><span>

EDVAC 116

ENI АС 112-120

IAS (Институт перспективных исследований) 13, 71, 99

Абердин 116

абстрактный автомат 136

самовоспроизводящийся 137

аксиоматизация 13, 35, 48, 53, 61, 67, 87, 95, 151

аксиоматика 35, 38, 46, 53

фон Неймана 57

Цермело — Френкеля 48, 50, 51

алгоритм 106, 107, 112, 114-116

аппаратное обеспечение 114, 115, 126

архитектура фон Неймана 8, 21, 116, 120, 122, 126

бионика 148

Больцано, Бернард 44

Борель, Эмиль 72

Брауэр, Лёйтзен Эгберт Ян 82

Дирак, Поль 101

доминирующий выбор 85

Винер, Норберт 140

Витгенштейн, Людвиг 59, 90

Гейзенберг, Вернер 8, 52, 98

Гёдель, Курт 57, 59-61, 101, 154

Гёттинген 13, 33, 35-37, 47, 52-55, 66, 98, 100

Гильберт, Давид 7, 13, 26, 33, 37, 38, 47, 52-55, 57, 60, 61, 98

дилемма заключенного 78, 132—134

дифференциальное уравнение 52, 106, 107, 128

заклад 65, 66, 69

значение игры 74

игра

антагонистическая 66, 92, 135

«Жизнь» 143, 144

с двумя игроками 74, 76, 79-81, 134

игры

военные 24, 75, 135

стратегические 133

излучение 52

измерение 41, 54, 55, 104

исчисление бесконечно малых 67, 88, 104

Канн, Маргарет (мать) 13, 20, 29

Канн, Якоб (дедушка

с материнской стороны) 19, 20, 23

кибернетика 8, 9, 139, 140, 146, 148

класс 48, 50, 51

Клейн, Феликс 36, 37, 40, 41, 54

клетки 138, 141-144

«Колосс» 114, 118, 119

конъюнкция 56

кригшпиль (см. также военные игры) 24, 25, 130

Кун, Бела 11, 27, 129

логика 8, 11, 13, 35, 42, 56, 57, 59,

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары