В кубометре любой почвы содержатся практически все химические элементы. Они образуют молекулы, соединения, минералы. Пусть каждый элемент или минерал имеет свою форму. Тогда в почве можно обнаружить миллионы различных форм, от видимых глазом до субмикроскопических.
Любое почвенное тело включает в себя множество других тел. Поэтому не так просто установить его естественные границы. Приходится выбирать одну из множества линий на плоскости. В этом главная трудность полевого картографирования. Почвенное тело на разном уровне организации n-мерно и несет бесконечные сведения, а сумма этих бесконечностей должна быть отображена на карте всего лишь одной линией.
Почему почва проявляет себя во множестве обличий? Видимо, иначе она не смогла бы записать всю накопившуюся за века и тысячелетия информацию о прошедших событиях, связанных с эволюцией. Но, пожалуй, стоит удивляться не тому, что почва многомерна, а тому, что в ее необъятном мире форм все-таки обнаруживается нечто завершенное, единое, закономерное. Иначе говоря, природа почв целесообразна не только в своей сложности, но и в наличии таких комбинаций форм, которые вновь дают простые сочетания. Последние и создают иллюзию простоты строения почвы.
Начав с нульмерного, самого простого, элементарного, мы заканчиваем исследование сложными построениями. Затем это сложное представляем как сумму простого. Нам начинает казаться, что почвенный мир познан. Но кто-то может сказать: «Ваша сложность есть лишь элемент следующего порядка», и поиск продолжится. С этим приходится смириться: ведь мы соприкоснулись с многомерностью природы.
КОНЦЕНТРАЦИЯ —
РАССЕЯНИЕ (ДЕКОНЦЕНТРАЦИЯ)
На предыдущих примерах можно было заметить, что каждая обсуждаемая проблема носит характер антиномии, противопоставления. Это отражено в принципе дополнительности Н. Бора, а математически — в теории групп. Обсудим с позиций антиномии еще один вопрос существования материи, прямо касающийся почв. Это второй закон термодинамики, который в науке до недавнего времени не имел дополнительной пары. Согласно этому закону, изолированная физическая система самопроизвольно и необратимо стремится к состоянию равновесия; при этом энергия непрерывно рассеивается, а не концентрируется.
Но можно ли считать почву физической системой, да еще закрытой, изолированной от внешнего мира? Если почва не физическая система, то какая? Не будем же мы считать почву живым существом. А если она физическая система, то согласно физической теории в ней должно идти разрушение порядка, выравнивание различий и симметризация явлений, чего не наблюдается. Если же почву считать живой системой, то согласно биологической теории в ней должно идти непрерывное и повсеместное созидание, структурирование, диссимметризация, накопление энергии, способной производить работу.
Можно ли ожидать, что физические законы, выявленные для мертвой материи, и биологические — для живой, могут быть одновременно применимы при описании природы почв? Если придерживаться физических законов, то почва должна терять свободную («работоспособную») энергию, увеличивая энтропию; если же биологических — она должна концентрировать, накапливать, такую энергию. От того, какое из этих двух аксиоматических положений будет нами принято, зависит ход дальнейших теоретических построений. Поэтому антиномия «концентрация — деконцептрация» имеет большое значение для почвоведения.
П. К. Ощепков (1967) указывал на существование такой дополнительной пары: «деконцентрация», когда «нагретый чайник» остывает, а «концентрация» — обратный процесс, когда «чайник с холодной водой» сам закипает без огня, вбирая тепло из окружающего пространства. Эта антиномия для несамоорганизующихся систем противоречит здравому смыслу. Но поищем аналогии в природе. Природным объектом, в котором одновременно происходит самопроизвольная концентрация и деконцентрация свободной энергии, являются почвы. Они, как и все живое на Земле, казалось бы, противоречат обычному проявлению второго начала термодинамики в физических системах: в начальной стадии развития за счет фотосинтеза растений почвы активно концентрируют энергию, в зрелости находятся в устойчивом неравновесном состоянии, а разрушаясь, рассеивают свободную энергию, повышая энтропию.