В обнаружении новых природных источников энергии почвоведение выходит на передовые позиции. В почвах превращение одних видов энергии в другие отличается большим разнообразием. При этом в них возникают постоянные естественные поля с напряжением 0,01—0,001 В. Электромагнитные поля почв и земной коры изучают геофизики, а редокс-потенциал замеряется почвоведами, биологами. Эти поля хотя и невелики, но выполняют различную работу: в одних случаях полезную для человека, в других — неблагоприятную. Различные металлические предметы: трубы, провода, опоры, закопанные в почву, подвергаются коррозии за счет возникновения вокруг этих предметов электрических полей. С другой стороны, электромагнитные поля, видимо, участвуют в образовании и концентрации гумуса, водопрочных микроагрегатов почв, конкреций.
Микровольтметры показывают очень четкое возрастание напряжения электрического поля при повышении температуры почвы. В теплый солнечный день редокс-потенциал почв увеличивается на 30–50 мВ по сравнению с холодным утром. Причем эти колебания носят закономерный синусоидальный характер в течение суток (Снакин, 1984). Деятельность электронов и (или) ионов можно и послушать: для этого нужно подключить провода репродуктора или телефона к двум разнородным металлическим стержням, воткнутым в почву. Послышится слабый треск, усиливающийся при повышении температуры почвы, увлажнении, увеличении содержания солей, гумуса. Видимо, почвообразование протекает под контролем естественных гравитационных, электромагнитных и биологических полей.
Если бы удалось изучить природу этих полей в почвах, то можно было бы ими управлять в целях повышения биологической продуктивности растений.
Предполагается, что необычайно мощный рост дальневосточных растений связан с высокой магнитной восприимчивостью почв, в десятки раз превышающей таковую почв европейских. Можно привести и другие примеры, которые свидетельствуют о корреляции почвенных процессов с электромагнитными свойствами почв.
Всем известен факт несимметричного строения рельефа земной поверхности, ее высокой «гофрированности»: одни склоны — холодные и влажные, теневые обращены на север и запад, а другие — теплые и более сухие, солнечные — на юг и восток. Почвы теневых склонов всегда мощные, многогумусные, мелкоземистые, а почвы солнечных склонов — маломощные, малогумусные, щебнисто-мелкоземистые. Заметное расхождение в содержании гумуса (3–5 %) объясняют просто: на теневых склонах идут процессы, благоприятствующие его накоплению, а на солнечных гумус минерализуется, «сгорает».
Однако различия в природе почв можно объяснить иначе. Разница в температурах поверхности почв теневого и солнечного склонов достигает 10–30 °C. Тепло от нагретого склона перемещается к холодному, создавая эффект, который внешне подобен явлению, происходящему в термопаре, что способствует возникновению естественного потока зарядов. Видимо, он несет отрицательно заряженные анионы — радикалы гуминовых кислот — с теплого склона на холодный, пополняя запасы гумуса в его почвах, а из почв холодных склонов на теплые мигрируют катионы — кальций, магний, которые способствуют окарбоначиванию почв солнечных склонов. По механизму это явление напоминает термоградиентный перенос вещества в почве.
Подобные электрические токи идут и по вертикальному почвенному профилю, осуществляя электрофорез, проявляющийся в специфике гумусообразования — в равномерном окрашивании почвенной толщи, создании глееватости и охристости в периодически увлажняемых почвах. Смена тепла и влаги изменяет полярность электрического поля, что приводит к перезарядке некоторых почвенных горизонтов (особенно глеевых).
Представление о «перетекании» электричества из одной элементарной почвенной ячейки в другую, от одного склона к другому помогает объяснить природу многих физико-географических явлений: например, наличие четкой границы между лесом и субальпийскими лугами в горах, формирование снежников и ледничков в пригребневых частях теневых склонов и т. п. Здесь, видимо, возможно возникновение эффекта, подобного эффекту Пельтье[3]
. Если в качестве «электрической цепи», состоящей из проводников разного качества, рассматривать почвы склонов северной и южной экспозиции, а спаем считать рыхлые горные породы водораздела, то можно ожидать этот эффект. Он, вероятно, вызывает температурные различия в почвах пригребневых частей склонов: в месте контакта склона с гребнем, где располагается граница между лесом и лугом или где сохраняются снежники, образуются аномально низкие температуры (теневой склон), а на противоположном солнечном склоне — аномально высокие температуры. Замеры электродвижущей силы показывают здесь высокие значения.