При проецировании элементов симметрии бордюров па плоскость используют следующие обозначения: тонкие горизонтальные линии — оси переносов (а);
штриховые линии — плоскости скользящего отражения а\ горизонтальные толстые линии— обыкновенные плоскости тп, проходящие перпендикулярно чертежу. Вертикальные отрезки прямых изображают следы поперечных плоскостей симметрии; маленькие черные двуугольники, перпендикулярные чертежу, — оси второго порядка. С помощью названных элементов симметрии можно выявить общность между почвами, профили которых на первый взгляд кажутся неодинаковыми, или коренное различие между почвами, профили которых кажутся сходными[7].Напомним, что слово «бордюр» мы употребляем не в обычном житейском смысле, а как вполне определенный научный термин. В жизни бордюры — это настенная роспись, гипсовые барельефы, узорчатый рисунок решеток на окнах. Почвенные горизонты, если проследить за их динамикой вдоль длинной траншеи, также образуют своеобразные бордюры. Как математик и художник создают и изучают свои узоры, так и почвовед, описав по траншее мозаику (см. рис. 4, III)
, конструирует абстрактные почвенные образы в виде бордюров, розеток, решеток и других геометрических структур.На рис. 7 изображены фрагменты почвенных профилей — их верхние части с горизонтами А и частично В. Формы горизонтов могут быть различными, но тем не менее все разнообразие почвенных профилей па Земле сводится к семи (не более!) видам симметрии бордюров. Так, формы гумусовых горизонтов (рис. 7, I):
языковатая, дуговая или синусоидальная — для черноземов Европы (верх), пильчатая — для черноземов Америки (середина), карманная, или шевронная, — для черноземов Сибири (низ) все же будут характеризоваться лишь одним видом симметрии бордюров, а именно (а): т. То есть отрезки прямых т перпендикулярны оси переноса (а). Это значит, что, несмотря на разнообразие внешних условий среды луго-степей Европы, Америки и Сибири, внутренние структурные связи в профиле черноземов стабильны и подчиняются в своем пространственном распределении только одному закону симметрии. Здесь формы почвенных индивидов — педонов и их сочетаний — полипедонов обладают высокой степенью симметрии. Такая симметрия — показатель того, что черноземы в энергетическом отношении находятся в устойчивом состоянии.Каштановые и подзолистые почвы (рис. 7, II)
имеют наклонную асимметричную форму мозаик, а потому их сочетания образуют простой ряд бордюров, описываемый символом (а). Схематически бордюр этого типа показан в виде линии и расположенных под ней асимметричных треугольничков. Ось переноса полярна, т. е. свойства бордюра в направлении слева направо (вниз по склону) иные, чем в обратном направлении. Следуя слева направо, всегда встретим острые языки горизонта А, а при обратном движении — только плавные изгибы линий. Создается впечатление однонаправленного поступательного движения.Мерзлотные почвы (рис. 7, III)
повсюду, несмотря на механическое криогенное искажение форм горизонтов, описываются символами (а) — а. Здесь, впрочем как и для рис. 7, IV, ось переноса является осью скользящего отражения, т. е. мозаика приходит в самосовмещение после последовательных переносов на половину расстояния а/2 и отражения в плоскости, перпендикулярной чертежу. Операции необходимо проводить одна за другой, а не порознь: взятые отдельно перенос и отражение не приводят фигуру в самосовмещение.Столбчатые отдельности солонцов, солончаков и солодей образуют «самый распространенный и вместе с тем самый скучный вид симметрии бордюров» (Шубников, Копцик, 1972), который возникает при комбинировании оси трансляций с поперечной и продольной плоскостями симметрии (рис. 7, IV).
Предельный случай этого вида симметрии (а0
):2-m осуществляется в однообразном профиле почвы, например в слитоземе, торфе, такыре, песке, где ось непрерывных (сплошных) переносов а0 перпендикулярна плоскости симметрии т.Границы профиля пустынных почв с близким залеганием горных пород (рис. 7, V) напоминают контур дубового листа. Такая форма профиля описывается символами (а)*т.
Здесь наряду с переносной мы имеем зеркальную симметрию: бордюры зеркально симметричны относительно прямой, делящей почвенный профиль пополам в продольном направлении. Ось переноса является также осью симметрии, или, иначе, ось переносов комбинируется с продольной плоскостью симметрии (а) * m, т. е. ось (а) параллельна плоскости т.Луговые почвы (рис. 7, VI)
, несмотря на их разнообразие, чаще подчиняются закону симметрии (а):2*а.ТРЕХМЕРНАЯ (ОБЪЕМНАЯ) МОДЕЛЬ