Множеством в науках о Земле можно назвать горные породы, почвы, ландшафты, если Представить эти сложные объекты в виде совокупности простых составляющих, объединенных некоторым общим признаком и воспринимаемых как целое. Например, элементарные единицы множеств в геологии — это минералы; в почвоведении — горизонты, профили, ареалы; в кристаллографии — точки, оси, плоскости.
Если формы почв и горных пород представить в виде геометрических образов, состоящих из множеств: точек, линий, плоскостей, как это сделали кристаллографы, изучая реальные кристаллы, то на множестве таких элементов можно задать отношения и операции. Например, операции вращения, отражения, а также умножение, прибавление, вычитание. Множество элементов, или, иначе, букв алфавита
W=(M; ?).
Модель
Эту на первый взгляд сложную мозаику почв можно все же расчленить. Для этого сначала надо выделить первичные структурные единицы — клетки или ячейки. Они, как видно на снимках, состоят из прямоугольников, косоугольников, квадратов, шестиугольников, окружностей. Это и есть буквы алфавита почвенных форм. Пока нам известны не все буквы. Но когда их изучат по всей Земле, можно будет составлять из «букв» слова и читать тексты (сочетания букв-форм), написанные природой. Тем не менее даже при имеющемся скудном знании об элементарных формах попробуем показать на конкретном материале, как это можно сделать.
На рис. 1 видно, что каждая элементарная почвенная клетка располагается по отношению к соседней клетке на разных снимках (
Тексты, или системы земной поверхности, устанавливаются в результате операций симметрии — движений клеток вверх, вниз, влево, вправо, т. е. путем перестановок, вращений, отражений от зеркальной поверхности и других преобразований. Если на первом этапе изучения рис. 1 мы провели анализ, т. е. мысленно разложили почвенный покров на составные части — клетки, то теперь при помощи операций симметрии (движений) производим синтез, «собрание» клеток в целое, мысленно воссоздаем единство почвенной системы.
Глядя на рис. 1, представим множество различных движений какой-либо одной клеткой. Такой перевод клетки «в себя» и служит характеристикой ее симметрии. Чем больше такое множество самосовмещений, тем симметричнее клетки и включающие их почвенные системы. Однако многие из них описываются небольшим числом движений: по окружности и вдоль радиуса — (рис. 1,
Множество движений, которое обнаруживается на рис. 1, можно назвать группой симметрии, так как они могут быть выполнены по определенным правилам (композициям). Существует разработанная на математической основе специальная теория симметрии, которую называют теорией групп преобразований, или просто теорией групп.