2) отделить почвенное свойство от его формы, т. е. сделать главное в научном познании — перейти от конкретного it абстрактному. Например, для объектов, представленных на рис. 1, на данном этапе рассмотрения важно не то, каков вещественный состав почв (глинистые, песчаные, засоленные, мерзлотные), а то, какой геометрический рисунок они образуют;
3) признать фундаментальность «кирпичика», или «клетки», «ячеи» — элементарной единицы почвенного покрова. Для почв, показанных на рис. 1,
Реальные формы земной поверхности: эоловые, мерзлотные, тектонические — изучаются методами следующих наук: географии, почвоведения, геологии. Теоретизация знаний, базирующаяся на переходе от реального к абстрактному, требует иного метода познания, а именно аксиоматического. В почвоведении, например, его внедрением займется геометрическое почвоведение — наука о морфологии почв. Имея дело с абстракциями, оно нуждается в подтверждении их объективной реальности посредством построения системы аксиом.
Аксиоматический метод ведет к тому, что конкретные свойства и отношения форм земной поверхности: тектонические, мерзлотные, эоловые, казавшиеся совершенно различными, окажутся на абстрактном уровне рассмотрения структурами одних и тех же геометрических свойств и отношений. Так, несмотря на различие в генезисе форм, почвы, показанные на рис. 1, могут быть описаны присущей им одной группой симметрии.
Задача аксиоматики — свести все разнообразие почвенно-геологических реальных структур к их абстрактной основе — к математической структуре. Строение земной поверхности будет считаться познанным лишь тогда, когда будет найдено общее начало, всеобщая «идея» в виде математической структуры или закона.
Чтобы почвоведению построить собственную аксиоматику, необходимо обратиться за опытом к смежным наукам. В геометрии положение, принятое без логического доказательства в силу очевидности, называется аксиомой, или постулатом. Аксиома — истинное исходное положение теории. Аксиоматика — набор аксиом, из которых строятся логические представления геометрии. Аксиоматика может оказать услугу геометрическому почвоведению, которое в свои постулаты включает те же элементы, что и геометрия (точку, линию, плоскость), и некоторые ее аксиомы: 1) сочетания, 2) порядка, 3) движения, 4) непрерывности и 5) параллельности.
Геометрическое почвоведение тесно связано с системным подходом. Поэтому оно заимствует некоторые аксиоматические положения общей теории систем Ю. А. Урманцева (1974 и др.):
На языке почвоведения вышеперечисленные положения Ю. А. Урманцева
Как видим, аксиомы строятся для конструирования абстрактных образов. Их составление для реальных /природных тел не имеет смысла. Так, И. А. Соколов, В. О. Таргульян (1977) в качестве аксиом почвоведения предложили три положения:
Определение