Не следует превратно понимать стремление допустить однородность и масштабную инвариантность. Как и в случае обыкновенной геометрии природы, все мы прекрасно осведомлены о том, что ничто в окружающем нас мире не является ни строго однородным, ни масштабно-инвариантным. Обыкновенная геометрия рассматривает прямые как предварительные модели. Так же и в механике понятие однородного прямолинейного движения является лишь первым шагом.
Те же соображения применимы и к изучению масштабно-инвариантных фракталов, однако в этом случае первый шаг получается значительно более длинным, поскольку вместо прямых линий мы имеем огромное множество самых разнообразных возможностей, лишь самые яркие примеры которых вошли в эту книгу. Не следует удивляться тому, что масштабно-инвариантные фракталы используются здесь лишь как источники первых приближений к естественным структурам, подлежащим рассмотрению. Скорее, удивиться нужно тому, насколько поразительно верными оказываются эти первые приближения.
Нелишним будет напомнить, что идея самоподобия далеко не нова.. В случае с прямыми эта идея пришла в голову еще Лейбницу примерно в 1700 г. (см. раздел МАСШТАБНАЯ ИНВАРИАНТНОСТЬ ПО ЛЕЙБНИЦУ И ЛАПЛАСУ в главе 41). Ее математическому обобщению, не ограничивающемуся прямыми и плоскостями, скоро исполнится сто лет, хотя реальной его важности до настоящего эссе никто не признавал. Физики тоже давно знакомы с самоподобием — с тех пор, как в 1926 г. Льюис Ф. Ричардсон предположил, что турбулентность в широком диапазоне масштабов может быть разбита на самоподобные завихрения. Поразительные аналитические следствия этой идеи в приложении к механике были сформулированы Колмогоровым в работе [276]. Что касается масштабной инвариантности, то ее аналитические аспекты связываются в физике с понятием ренорм-групп (см. главу 36).
И все же впервые геометрические аспекты нестандартной масштабной инвариантности в Природе были должным образом освещены лишь в первом издании настоящего эссе в 1975 г.
«СИММЕТРИИ» ЗА ПРЕДЕЛАМИ МАСШТАБНОЙ ИНВАРИАНТНОСТИ
Покончив с прямыми, евклидова геометрия берется за фигуры, обладающие более богатыми в смысле инвариантности свойствами, обычно называемыми «симметриями». Мы с вами также не преминем отправиться на довольно продолжительную экскурсию в царство неинвариантных фракталов (в главах 15-20).
Самоотображающиеся, но масштабно-неинвариантные фракталы тесно связаны с некоторыми из наиболее тонких и сложных мест «строго классического» математического анализа. Опровергая распространенное мнение о сухости анализа, эти фракталы удивительно прекрасны.
СИНДРОМ РАСХОДИМОСТИ
Почти все подлежащие далее рассмотрению прецеденты демонстрируют проявления синдрома расходимости. Иными словами, некоторая величина — по всем предположениям, положительная и конечная — оказывается вдруг бесконечной либо вовсе обращается в нуль. На первый взгляд, такое недостойное поведение кажется в высшей степени странным и даже пугающим, однако тщательное исследование показывает, что оно вполне объяснимо, если ... если, конечно, вы готовы начать мыслить по-новому.
Прецеденты, в которых симметрия сопровождается расходимостью, также давно известны специалистам по квантовой физике, в которой вообще большим почетом пользуются всевозможные аргументы, устраняющие расходимость. К счастью для нас, с фрактальными расходимостями справиться гораздо проще.
4 ВАРИАЦИИ НА ТЕМУ
Обозначив в общих чертах все разнообразные задачи настоящего эссе, рассмотрим способы, с помощью которых эти задачи решаются. Здесь можно выделить несколько ярко выраженных граней.
НЕЯСНОСТЬ ИЗЛОЖЕНИЯ - НЕ ДОБРОДЕТЕЛЬ
Для того, чтобы книга оказалась доступной для ученых и студентов, вовсе не обязательно являющихся специалистами во всех затрагиваемых здесь областях знания (многие из которых, надо признать, весьма эзотеричны), я стремился сделать изложение как можно более ясным.
Однако ясность изложения не является главной целью этой книги.
Кроме того, мне не хотелось отпугнуть тех людей, кому, возможно, не слишком важна математическая точность, но наверняка интересны мои основные выводы. Вам встретятся в книге и строгие математические обоснования моих слов (более здравые, между прочим, чем у многих физиков), однако общий стиль выдержан в неформальном (хотя и точном) ключе. Большая часть математических подробностей отнесена в главу 39 — там можно навести необходимые справки и вдохновиться на создание собственных трудов.
Поскольку для оригинального исследования такие вещи, как правило, не характерны, настоящее эссе можно считать до некоторой степени популяризаторским.
Однако популяризация не является его главной целью.
ЭРУДИЦИЯ ПОЛЕЗНА ДЛЯ ДУШИ