Эффективная размерность выражает соотношение между математическими множествами и естественными объектами. Строго говоря, все физические объекты — такие, например, как вуаль, нить или маленький шарик — должны быть представлены трехмерными телами. Однако физики предпочитают считать, что вуаль имеет размерность 2, а размерности нити и шарика равны соответственно 1 и 0 (при условии, разумеется, что и вуаль, и нить, и шарик достаточно малы). Например, для описания нити относящиеся к множествам с размерностями 1 или 3 теории должны быть соответствующим образом скорректированы с помощью поправочных членов. После этого строится более точная геометричеcкая модель, требующая меньших поправок. Если повезет, такая модель оказывается верной даже без учета поправок. Иными словами, эффективная размерность неизбежно опирается на субъективный фундамент; она обусловлена приближением и, как следствие, степенью разрешения.
ЭФФЕКТИВНЫЕ РАЗМЕРНОСТИ, СКРЫТЫЕ В СКРУЧЕННОМ ИЗ НИТИ ШАРЕ
Для подтверждения последнего заявления скрутим из толстой нити диаметром 1 мм шар диаметром 10 см и рассмотрим скрытые в таком клубке эффективные размерности.
Удаленному наблюдателю наш клубок покажется фигурой с нулевой размерностью, т. е. точкой. (Да что там клубок! — еще Блез Паскаль и средневековые философы утверждали, что в космическом масштабе весь наш мир есть не более, чем точка!) С расстояния в 10 см шар из нитей выглядит как трехмерное тело, а с расстояния в 10 мм — как беспорядочное переплетение одномерных нитей. На расстоянии в 0,1 мм каждая нить превратится в толстую колонну, а вся структура целиком опять станет трехмерным телом. На расстоянии 0, 01 мм колонны превратятся в переплетение волокон — шар снова станет одномерным. При дальнейшем приближении процесс становится периодическим — размерность наблюдаемой фигуры переключается с одного значения на другое и наоборот. Наконец, когда клубок превратится в скопление, состоящее из какого-то конечного числа точек, имеющих размеры порядка атомных, его размерность снова становится равной нулю. Похожую последовательность смены размерностей можно наблюдать при разглядывании листа бумаги.
Тот факт, что численный результат может и должен зависеть от соотношений между объектом и наблюдателем, не только вполне в духе сегодняшней физики, но и являет собой достойный подражания пример.
Большинство объектов, рассматриваемых в этой книге, похожи на наш нитяной клубок: они демонстрируют целую последовательность различных эффективных размерностей. Однако существует одно важное отличие: некоторые недостаточно определенные переходы между зонами с отчетливо выраженной размерностью интерпретируются здесь как фрактальные зоны, внутри которых
ПРОСТРАНСТВЕННАЯ ОДНОРОДНОСТЬ, МАСШТАБНАЯ ИНВАРИАНТНОСТЬ И САМОПОДОБИЕ
Оставим пока размерности в покое и приготовимся к разговору о симметрии, для чего вспомним о простейших формах, с которых начинается евклидова геометрия: о линиях, плоскостях и пространствах. И о простейших физических задачах, возникающих при однородном распределении какой-либо физической величины — плотности, температуры, давления или скорости.
Однородное распределение вдоль линии, на плоскости или в пространстве обладает двумя очень привлекательными свойствами. Оно инвариантно при смещении и при изменении масштаба. При переходе к фракталам обе инвариантности неизбежно подвергаются модификации и/или/ ограничению области их действия. Следовательно, наилучшими можно считать те фракталы, которые демонстрируют максимальную инвариантность.
В случае смещения различные участки траектории броуновского движения частицы не могут быть точно совмещены друг с другом, как, например, могут быть совмещены различные участки прямой линии. Тем нe менее, можно считать, что эти участки совместимы в статистическом смысле. Почти все фракталы, представленные в этой книге, в той или иной степени инвариантны при смещении.
Более того, большинство этих фракталов инвариантны при некоторых преобразованиях масштаба. Назовем их масштабно-инвариантными фракталами. Фрактал, инвариантный при обычном геометрическом преобразовании подобия, называется самоподобным.
В составном термине масштабно-инвариантные фракталы прилагательное служит для смягчения существительного. Основной термин фрактал подразумевает неупорядоченность и относится к структурам ярко выраженной иррегулярности, тогда как определение масштабно-инвариантный намекает на некоторый порядок. Если же под основным термином понимать масштабную инвариантность, предполагающую строгий порядок, то фрактал сыграет роль модификатора, призванного исключить всякий намек на прямые и плоскости.