Читаем Фрактальная геометрия природы полностью

В статье [469] физическое броуновское движение описывается следующим образом: «Все части находящейся в состоянии равновесия жидкой массы (такой, например, как вода в стакане), представляются нам совершенно неподвижными. Если поместить в нее объект с большей плотностью, то он опустится вниз. Скорость этого падения, разумеется, будет тем меньше, чем меньше объект, и все же в конце концов любой видимый объект опускается на дно сосуда и не проявляет стремления вновь подняться на поверхность. Однако, наблюдая за взвесью в жидкости очень мелких частиц, нетрудно заметить, что их движение абсолютно беспорядочно. Они движутся, останавливаются, снова начинают движение, взбираются вверх, опускаются, снова поднимаются и совершенно не желают оставаться неподвижными».

В качестве иллюстрации приводится один из многих изображающих этот естественный феномен рисунков из книги Перрена «Атомы» [470]. На нем изображены четыре индивидуальные траектории движения коллоидной частицы радиуса 0,53μ, полученные с помощью микроскопа. Через каждые 30 секунд на координатной сетке отмечались последовательные положения частицы (шаг сетки 3,2μ), которые соединялись затем прямыми (эти прямые, таким образом, не имеют никакого физического смысла).

Продолжим наш вольный перевод из Перрена [469]. «Может возникнуть искушение определить «среднюю скорость частицы», как можно точнее последовав за ней по ее извилистому пути. Однако подобная оценка окажется в корне неверной. И величина, и направление видимой средней скорости частицы изменяются самым безумным образом. Рисунок дает лишь слабое представление об изумительной запутанности реальной траектории. Если бы положения частицы регистрировались в 100 раз чаще, то вместо каждого отрезка прямой мы получили бы ломаную, столь же сложную как и исходный рисунок, хотя и меньших размеров — и так далее. Нетрудно убедиться, что на практике понятие касательной в применении к таким кривым является полной бессмыслицей».

Автор настоящего эссе разделяет мнение Перрена, однако рассматривает неправильность под несколько иным углом. Мы подчеркиваем тот факт, что при последовательном увеличении разрешения микроскопа, длина траектории наблюдаемого броуновского движения возрастает до бесконечности (см. главу 25).

Кроме того, след, оставляемый броуновской частицей, в конце концов почти заполняет всю плоскость. Разве не напрашивается вывод, что в каком-то смысле (смысл этот нам еще предстоит отыскать) размерность этой необычной кривой должна совпадать с размерностью плоскости? Самое интересное — так оно и есть. Одна из главных задач этой книги заключается в том, чтобы показать, как расплывчатое понятие размерности расщепляется на несколько вполне определенных составляющих. Топологически след движения броуновской частицы является кривой (размерность 1). Однако так как он способен заполнить практически всю плоскость, то во фрактальном смысле его размерность равна 2. Расхождение между этими двумя величинами дает броуновскому движению право называться, согласно вводимой ниже терминологии, фракталом.

Рис. 29. ФИЗИЧЕСКОЕ БРОУНОВСКОЕ ДВИЖЕНИЕ. КЛАССИЧЕСКИЕ ЗАРИСОВКИ ЖАНА ПЕРРЕНА

3 РАЗМЕРНОСТЬ, СИММЕТРИЯ, РАСХОДИМОСТЬ

Центральную роль в этой книге играют древние понятия размерности (т. е. количества пространственных измерений или степени многомерности) и симметрии. Кроме того, позже мы неоднократно столкнемся с различными симптомами расходимости.

ИДЕЯ РАЗМЕРНОСТИ

Во время кризиса 1875-1925 гг. математики осознали, что невозможно достичь истинного понимания неправильности и фрагментации (равно как правильности и связности), по-прежнему определяя размерность как число пространственных координат. Первый шаг в направлении строгого анализа был сделан Кантором в его письме к Дедекинду от 20 июня 1877 г., следующий — Пеано в 1890 г., а к середине 20-х гг. XX в. процесс благополучно завершился.

Как случается со всеми значительными интеллектуальными достижениями, результат этого процесса может иметь весьма различные интерпретации. Во всех попадавших мне на глаза математических исследованиях теории размерности подразумевается, что теория эта единственна и неповторима. Главным здесь, на мой взгляд, является то, что довольно расплывчатое понятие размерности, судя по всему, имеет много математических аспектов, которые не только принципиально различны, но еще и дают различные числовые значения этой самой размерности. То, что Уильям из Оккама говорил о сущностях, относится и к размерностям — не следует множить размерности без необходимости, однако от множественности размерностей нам никуда не деться. Евклид в свое время ограничился множествами, все существенные размерности которых совпадают — эти множества можно назвать размерностно-согласованными множествами. С другой стороны, различные размерности множеств, которым посвящена значительная часть этой книги, отказываются совпадать, т. е. эти множества размерностно-несогласованы.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература