Значение показателя D
зависит, по всей видимости, от характера измеряемой береговой линии, причем различные участки этой линии, рассматриваемые по отдельности, могут дать различные D. Для Ричардсона величина D была просто удобным показателем, не имеющим какого-либо особенного смысла. Однако похоже, что значение этого показателя не зависит от выбранного метода оценки длины береговой линии. А значит, он заслуживает самого пристального внимания.ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ [356]
Изучив работу Ричардсона, я предположил [356], что хотя показатель D
не является целым числом, его можно и нужно понимать как размерность — точнее, как фрактальную размерность. Разумеется, я вполне осознавал, что все вышеперечисленные методы измерения L(ε) базируются на нестандартных обобщенных определениях размерности, уже применяемых в чистой математике. Определение длины, основанное на покрытии береговой линии наименьшим числом пятен радиуса ε, используется в [481] для определения размерности покрытия. Определение длины, основанное на покрытии береговой линии лентой шириной 2ε, воплощает идею Кантора и Минковского (см. рис. 56), а соответствующей размерностью мы обязаны Булигану. Однако эти два примера лишь намекают на существование многих размерностей (большинство из которых известны лишь немногим специалистам), которые блистают в различных узкоспециализированных областях математики. Некоторые из этих размерностей мы обсудим более подробно в главе 39.Зачем математикам понадобилось вводить это изобилие различных размерностей? Затем, что в определенных случаях они принимают различные значения. К счастью, с такими случаями вы в этом эссе не встретитесь, поэтому список возможных альтернативных размерностей можно с чистой совестью сократить до двух, о которых я, правда, еще не упоминал. Старейшая и подробнее исследованная размерность из нашего списка восходит еще к Хаусдорфу и служит для определения фрактальной размерности — очень скоро мы ею займемся. Вторая, более простая, размерность называется размерностью подобия: она носит не такой общий характер, как первая размерность, однако оказывается более чем адекватной во многих случаях — ее мы рассмотрим в следующей главе.
Разумеется, я не собираюсь приводить здесь математическое доказательство того, что показатель Ричардсона D
является размерностью. Честно говоря, я не представляю, как можно провести такое доказательство в рамках какой бы то ни было естественной науки. Я хочу лишь обратить внимание читателя на тот факт, что понятие длины ставит перед нами концептуальную задачу, а показатель D предоставляет удобное и изящное решение. Теперь, когда фрактальная размерность заняла свое место в изучении береговых линий, вряд мы захотим, из каких бы то ни было особенных соображений, возвращаться к тем временам, когда мы бездумно и наивно полагали D=1. Тому, кто все еще считает D=1, придется теперь постараться, если он пожелает доказать свою правоту.Следующий шаг — объяснение формы береговых линий и выведение значения D
из других, более фундаментальных соображений — я предлагаю отложить до главы 28. На этом этапе достаточно сказать, что в первом приближении D=3/2. Это значение слишком велико, чтобы верно описывать факты, однако его более чем достаточно для того, чтобы мы могли заявить: можно, должно и естественно полагать, что размерность береговой линии превосходит обычное евклидово значение для кривой D=1.ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ ХАУСДОРФА
Если согласиться с тем, что различные естественные береговые линии обладают бесконечной длиной, а также с тем, что значение длины, основанное на антропометрической величине ε
, дает лишь частичное представление о реальном положении дел, то каким образом можно сравнить между собой разные берега? Так как бесконечность ничем не отличается от бесконечности, умноженной на четыре, много ли нам будет проку от утверждения, что длина любого берега в четыре раза больше, чем длина любой из его четвертей? Необходим лучший способ для выражения вполне разумной идеи о том, что кривая должна обладать некоторой «мерой», причем эта мера для всей кривой должна быть в четыре раза больше, чем та же мера для любой из ее четвертей.