В высшей степени остроумный метод для достижения этой цели предложил Феликс Хаусдорф. В основе его метода лежит тот факт, что линейная мера многоугольника вычисляется сложением длин его сторон без каких бы то ни было их преобразований. Можно предположить, что эти длины сторон возводятся в степень
Рассмотрим с таких позиций полигональную (кусочно-линейную) аппроксимацию береговой линии, составленной из малых интервалов длины
Таким образом, теоретически аппроксимативная протяженность в размерности
Кроме того, получает простое подтверждение и обобщение тот факт, что длина внутренней области квадрата бесконечна: аппроксимативная протяженность береговой линии, определенная при любой размерности
ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ КРИВОЙ МОЖЕТ БЫТЬ БОЛЬШЕ ЕДИНИЦЫ; ФРАКТАЛЬНЫЕ КРИВЫЕ
Согласно замыслу своего создателя, хаусдорфова размерность сохраняет за собой обязанности обычной размерности и служит показателем степени при определении меры.
Однако с другой стороны, размерность
Я предлагаю называть кривые, фрактальная размерность которых превосходит их топологическую размерность 1, фрактальными кривыми. А в качестве краткого резюме для настоящей главы могу предложить следующее утверждение: в географических масштабах береговые линии можно моделировать с помощью фрактальных кривых. Береговые линии по своей структуре фрактальны.
Рис. 55. ОБЕЗЬЯНЬЕ ДЕРЕВО
На данном этапе этот небольшой рисунок следует рассматривать просто как декоративный элемент, он всего лишь заполняет пустое место.
Однако после прочтения главы 14 читатель сможет обнаружить здесь подсказку для распутывания «архитектурной» загадки на рис. 210. Более серьезную подсказку дает нижеприведенный генератор:
Если у математика возникает необходимость «приручить» какую-нибудь особенно нерегулярную кривую, он может воспользоваться следующей стандартной процедурой: выбирается некое значение
На помещенных здесь иллюстрациях вышеописанное сглаживание применяется не к реальным берегам, а к одной теоретической кривой, которую мы построим несколько позже (см. рис. 79) путем постоянного добавления все более мелких деталей. Сравнивая изображенный справа кусок сосиски с правым концом сосиски, помещенной вверху, мы видим, что критический этап в построении кривой наступает, когда кривая начинает включать в себя детали меньшего, чем
Рис. 57. ЭМПИРИЧЕСКИЕ ДАННЫЕ РИЧАРДСОНА ОТНОСИТЕЛЬНО СКОРОСТИ РОСТА ДЛИН БЕРЕГОВЫХ ЛИНИЙ