Читаем Фрактальная геометрия природы полностью

В высшей степени остроумный метод для достижения этой цели предложил Феликс Хаусдорф. В основе его метода лежит тот факт, что линейная мера многоугольника вычисляется сложением длин его сторон без каких бы то ни было их преобразований. Можно предположить, что эти длины сторон возводятся в степень D=1, равную евклидовой размерности прямой (причина такого предположения вскоре станет очевидной). Аналогичным образом вычисляется мера поверхности внутренней области замкнутого многоугольника — посредством покрытия ее квадратами, нахождения суммы длин сторон этих квадратов и возведения ее в степень D=2 (евклидова размерность плоскости). Если же использовать при вычислениях «неверную» степень, то результат этих вычислений не даст нам никакой полезной информации: площадь любого замкнутого многоугольника окажется равной нулю, а длина его внутренней области будет бесконечной.

Рассмотрим с таких позиций полигональную (кусочно-линейную) аппроксимацию береговой линии, составленной из малых интервалов длины ε. Возведя длину интервала в степень D и умножив ее на число интервалов, мы получим некую величину, которую можно предварительно назвать «аппроксимативной протяженностью в размерности D». Так как, согласно Ричардсону, число сторон равно N=Fε−D то наша аппроксимативная протяженность принимает значение D−D=F.

Таким образом, теоретически аппроксимативная протяженность в размерности D не зависит от ε. На практике же можно наблюдать лишь незначительное изменение этой аппроксимативной протяженности при изменении е.

Кроме того, получает простое подтверждение и обобщение тот факт, что длина внутренней области квадрата бесконечна: аппроксимативная протяженность береговой линии, определенная при любой размерности d, стремится к бесконечности при ε→0. Так же обстоит дело и с равенством нулю площади и объема прямой. При любом d>D соответствующая аппроксимативная протяженность береговой линии стремится к нулю при ε→0. То есть аппроксимативная протяженность береговой линии демонстрирует благоразумное поведение тогда и только тогда, когда d=D.

ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ КРИВОЙ МОЖЕТ БЫТЬ БОЛЬШЕ ЕДИНИЦЫ; ФРАКТАЛЬНЫЕ КРИВЫЕ

Согласно замыслу своего создателя, хаусдорфова размерность сохраняет за собой обязанности обычной размерности и служит показателем степени при определении меры.

Однако с другой стороны, размерность D в высшей степени необычна, — она выражается дробным числом! Мало того, она больше единицы, которая представляет собой «естественную» размерность для кривых (можно строго доказать, что единице равна и их топологическая размерность DT).

Я предлагаю называть кривые, фрактальная размерность которых превосходит их топологическую размерность 1, фрактальными кривыми. А в качестве краткого резюме для настоящей главы могу предложить следующее утверждение: в географических масштабах береговые линии можно моделировать с помощью фрактальных кривых. Береговые линии по своей структуре фрактальны.

Рис. 55. ОБЕЗЬЯНЬЕ ДЕРЕВО


На данном этапе этот небольшой рисунок следует рассматривать просто как декоративный элемент, он всего лишь заполняет пустое место.

Однако после прочтения главы 14 читатель сможет обнаружить здесь подсказку для распутывания «архитектурной» загадки на рис. 210. Более серьезную подсказку дает нижеприведенный генератор:

Если у математика возникает необходимость «приручить» какую-нибудь особенно нерегулярную кривую, он может воспользоваться следующей стандартной процедурой: выбирается некое значение ε, и вокруг каждой точки кривой строится круг радиуса ε. Эта процедура, восходящая, по меньшей мере, к Герману Минковскому, а то и к самому Георгу Кантору, несколько грубовата, но зато весьма эффективна. (Что касается термина сосиска, то его происхождение, согласно непроверенным слухам, как-то связано с применением Норбертом Винером данной процедуры к броуновским кривым.)

На помещенных здесь иллюстрациях вышеописанное сглаживание применяется не к реальным берегам, а к одной теоретической кривой, которую мы построим несколько позже (см. рис. 79) путем постоянного добавления все более мелких деталей. Сравнивая изображенный справа кусок сосиски с правым концом сосиски, помещенной вверху, мы видим, что критический этап в построении кривой наступает, когда кривая начинает включать в себя детали меньшего, чем ε, размера. На более поздних этапах сосиска существенно не изменяется.

Рис. 57. ЭМПИРИЧЕСКИЕ ДАННЫЕ РИЧАРДСОНА ОТНОСИТЕЛЬНО СКОРОСТИ РОСТА ДЛИН БЕРЕГОВЫХ ЛИНИЙ


Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература