Читаем Фрактальная геометрия природы полностью

Я утверждаю, что кривая Коха является грубой, но математически строгой моделью береговой линии. В качестве первой количественной проверки рассмотрим длину L(ε) троичного терагона Коха, длина сторон которого равна ε. На этот раз длину кривой можно измерить точно, получив при этом чрезвычайно удовлетворительный результат:

L(ε)=ε1−D.

Эта точная формула оказывается идентичной эмпирическому закону Ричардсона о длине побережья Британии. Для троичной кривой Коха имеем

D=ln4/ln3≈1,2618,

откуда следует, что значение D находится внутри интервала значений, полученных Ричардсоном!

< Доказательство: Очевидно, что L(1)=1, а

L(ε/3)=(4/3)L(ε).

Это уравнение имеет решение вида L(ε)=ε1−D если D удовлетворяет соотношению 3D−1=4/3.

Следовательно, D=ln4/ln3, что и следовало доказать. ►

Разумеется, в случае кривой Коха показатель D представляет собой не эмпирическую, а математическую постоянную. Таким образом, аргументы в пользу того, чтобы считать этот показатель размерностью, становятся еще более убедительными, чем в случае береговых линий.

С другой стороны, аппроксимативная хаусдорфова протяженность в размерности D (понятие, введенное в предыдущей главе) равна произведению εD на количество отрезков длины ε, т. е. εDε−D=1. Неплохое подтверждение тому, что величина D представляет собой хаусдорфову размерность. К сожалению, данное Хаусдорфом определение этой размерности весьма плохо поддается строгой математической трактовке. И даже если бы это было не так, идея обобщения понятия размерности на множество нецелых чисел настолько широка и чревата настолько серьезными последствиями, что более глубокое ее обоснование можно только приветствовать.

РАЗМЕРНОСТЬ ПОДОБИЯ

Оказывается, мы легко можем получить искомое более глубокое обоснование, рассмотрев случай самоподобных фигур и понятие размерности подобия. Мы часто слышим о том, что математики используют размерность подобия для приблизительного определения хаусдорфовой размерности, причем в большинстве случаев, рассматриваемых в этом эссе, такая приблизительная оценка оказывается верной. В применении к этим случаям мы вполне можем считать фрактальную размерность синонимом размерности подобия. < Аналогичным образом мы используем термин «топологическая размерность» как синоним обычной, «интуитивной», размерности. ►

В качестве своего рода стимулирующего вступления давайте рассмотрим стандартные самоподобные формы: отрезки прямой, прямоугольники на плоскости и т. д. (см. рис. 73). Евклидова размерность прямой равна 1, следовательно, при любом целочисленном «основании» b отрезок 0≤x может быть «покрыт» по всей «длине» (каждая точка при этом покрывается один и только один раз) некоторым количеством «частей», равным N=b. Эти «части» представляют собой отрезки (k−1)X/b≤x, где k изменяется от 1 до b. Каждая часть может быть получена из целого с помощью преобразования подобия с коэффициентом r(N)=1/b=1/N.

Евклидова размерность плоскости равна 2. Отсюда аналогичным образом следует, что при любом значении b «целое», состоящее из прямоугольника с длинами сторон 0≤xи0≤y, может быть без остатка «разбито» на N=b2 частей. Части эти представляют собой прямоугольники, определяемые системой уравнений

Где k и h изменяются от 1 до b. И здесь каждая часть может быть получена из целого с помощью преобразования подобия с коэффициентом r(N)=1/b=1/N1/2.

В случае прямоугольного параллелепипеда аналогичное рассуждение приводит нас к коэффициенту r(N)=1/N1/3.

Не возникает никаких сложностей и с определением пространств, евклидова размерность E которых больше 3. (Здесь и далее мы будем обозначать евклидову — или декартову — размерность буквой E.) Для всех D-мерных параллелепипедов (D) соблюдается равенство

r(N)=1/N1/D.

Таким образом,

NrD=1.

Эквивалентные альтернативные выражения имеют следующий вид:

lnr(N)=ln(1/N1/D)=−(lnN)/D,

D=−lnN/lnr(N)=lnN/ln(1/r)=.

Перейдем теперь к нестандартным фигурам. Для того, чтобы показатель самоподобия имел формальный смысл, необходимо лишь, чтобы рассматриваемая фигура была самоподобной, т. е. чтобы ее можно было разбить на N частей, каждая из которых может быть получена из целой фигуры с помощью преобразования подобия с коэффициентом r (в сочетании со смещением или преобразованием симметрии). Полученная таким образом величина D всегда удовлетворяет равенству

0≤D≤E.

В случае троичной кривой Коха N=4, а r=1/3, отсюда D=ln4/ln3, что полностью совпадает с хаусдорфовой размерностью.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература