Читаем Фундаментальные алгоритмы и структуры данных в Delphi полностью

{циклически применять алгоритмы балансировки при удалении из красно-черного дерева до тех пор, пока дерево не окажется сбалансированным}

repeat

{предположим, что дерево сбалансировано}

IsBalanced := true;

{если узел является корневым, балансировка выполнена, поэтому предположим, что это не так}

if (Node <> FBinTree.Root) then begin

{получить родительский и братский узлы}

if (Node <> nil) then begin

Dad := Node^.btParent;

if (Node = Dad^.btChild[ctLeft]) then begin

ChildType := ctLeft;

Brother := Dad^.btChild[ctRight];

end

else begin

ChildType := ctRight;

Brother := Dad^.btChild[ctLeft];

end;

end;

{нам требуется наличие черного братского узла, поэтому если в настоящий момент братский узел окрашен в красный цвет, окрасить родительский узел в красный цвет, братский узел в черный цвет и повысить ранг братского узла; затем снова повторить цикл}

if (Brother^.btColor = rbRed) then begin

Dad^.btColor := rbRed;

Brother^.btColor :=rbBlack;

rbtPromote(Brother);

IsBalanced := false;

end

{ в противном случае братский узел является черным}

else begin

{получить узлы-племянники, помеченные как дальний и ближний}

if (ChildType = ctLeft) then begin

FarNephew := Brother^.btChild[ctRight];

NearNephew := Brother^.btChild[ctLeft];

end

else begin

FarNephew := Brother^.btChild[ctLeft];

NearNephew := Brother^.btChild[ctRight];

end;

{если дальний узел-племянник является красным (обратите внимание, что он может быть нулевым), окрасить его в черный цвет, братский узел в цвет родительского узла, а родительский узел в красный цвет, а затем повысить ранг братского узла; задача выполнена}

if IsRed( FarNephew) then begin

FarNephew^.btColor :=rbBlack;

Brother^.btColor := Dad^.btColor;

Dad^.btColor :=rbBlack;

rbtPromote(Brother);

end

{в противном случае дальний узел-племянник является черным}

else begin

{если ближний узел-племянник является красным (обратите внимание, что он может быть нулевым), окрасить его в цвет родительского узла, родительский узел в черный цвет и повысить ранг узла-племянника посредством спаренного двустороннего поворота; в этом случае задача выполнена}

if isRed(NearNephew) then begin

NearNephew^.btColor := Dad^.btColor;

Dad^.btColor :=rbBlack;

rbtPromote(rbtPromote(NearNephew));

end

{в противном случае ближний узел-племянник является также черным}

else begin

{если родительский узел красный, окрасить его в черный цвет, а братский узел в красный, в результате чего задача будет выполнена}

if (Dad^.btColor = rbRed) then begin

Dad^.btColor :=rbBlack;

Brother^.btColor := rbRed;

end

{в противном случае родительский узел красный: окрасить братский узел в красный цвет и начать балансировку с родительского узла}

else begin

Brother^.btColor := rbRed;

Node := Dad;

IsBalanced := false;

end;

end;

end;

end;

end;

until IsBalanced;

end;

За исключением перекрытых методов Insert и Delete, класс TtdRedBlackTree не представляет особого интереса. Код интерфейса и дополнительного внутреннего метода, выполняющего повышение ранга узла, приведен в листинге 8.26.

Листинг 8.26. Класс TtdRedBlack и метод повышения ранга узла

type

TtdRedBlackTree = class(TtdBinarySearchTree) private protected

function rbtPromote(aNode : PtdBinTreeNode): PtdBinTreeNode;

public

procedure Delete(aItem : pointer); override;

procedure Insert(aItem : pointer); override;

end;

function TtdRedBlackTree.rbtPromote(aNode : PtdBinTreeNode): PtdBinTreeNode;

var

Parent : PtdBinTreeNode;

begin

{пометить родительский узел узла, ранг которого повышается}

Parent := aNode^.btParent;

{в обоих случаях существует 6 связей, которые необходимо разорвать и перестроить: связь узла с его дочерним узлом и противоположная связь; связь узла с его родительским узлом и противоположная связь; и связь родительского узла с его родительским узлом и противоположная связь; обратите внимание, что дочерний узел данного узла может быть нулевым}

{повысить ранг левого дочернего узла, т.е. выполнить поворот родительского узла вправо}

if (Parent^.btChild[ctLeft] = aNode) then begin

Parent^.btChild[ctLeft] := aNode^.btChild[ctRight];

if (Parent^.btChild[ctLeft]<> nil) then

Parent^.btChild[ctLeft]^.btParent := Parent;

aNode^.btParent := Parent^.btParent;

if (aNode^.btParent^.btChild[ctLeft] = Parent) then

aNode^.btParent^.btChild[ctLeft] := anode

else

aNode^.btParent^.btChild[ctRight J := aNode;

aNode^.btChild[ctRight] := Parent;

Parent^.btParent := aNode;

end

{повысить ранг правого дочернего узла, т.е. выполнить поворот родительского узла влево}

else begin

Parent^.btChild[ctRight] := aNode^.btChild[ctLeft];

if (Parent^.btChild[ctRight]<> nil) then

Parent^.btChild[ctRight]^.btParent := Parent;

aNode^.btParent := Parent^.btParent;

if (aNode^.btParent^.btChild[ctLeft] = Parent) then

aNode^.btParent^.btChild[ctLeft] := anode else

aNode^.btParent^.btChild[ctRight] := aNode;

aNode^.btChild[ctLeft] := Parent;

Parent^.btParent := aNode;

end;

{вернуть узел, ранг которого был повышен}

Result := aNode;

end;

Исходный код класса TtdRedBlackTree можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDBinTre.pas.

<p>Резюме</p>
Перейти на страницу:

Похожие книги

C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT