Другими словами, радиус звезды и температура ее поверхности в значительной степени определяют ее светимость. Звезды на главной последовательности несколько различаются по радиусу и более заметно — по температуре. После возведения в четвертую степень вариации температуры ведут к огромной разнице в светимости. Скажем, если рассматривать только звезды, расположенные на главной последовательности, то представители спектральных классов О и В светят в 100 000 раз сильнее Солнца, а светимость Солнца в 10 000 раз выше, чем у звезд спектрального класса М. А вот у звезд-гигантов светимость выше, чем у их «коллег» со сходной температурой, занимающих главную последовательность, поскольку гиганты намного больше, — некоторые из них в сотни и тысячи раз больше Солнца. С белыми карликами все происходит с точностью до наоборот: они намного тусклее, чем их эквиваленты на главной последовательности, потому что они в сотни раз меньше. Многие белые карлики не больше Земли. В двенадцатой главе мы поговорим о том, какие эволюционные процессы лежат в основе этих различных классов звезд.
Звездные массы
Важнейшим физическим свойством звезды является только ее масса. Она определяет светимость звезды, ее эволюционный путь, общее время жизни и, в конечном итоге, ее финал. К сожалению, звездные массы нельзя определить, просто измерив расстояния до звезд, а также их температуру и светимость. Нужно наблюдать за тем, как звезда «танцует» с другой звездой. Отслеживая эти орбитальные фанданго, астрономы могут призвать на помощь ньютоновскую силу тяготения и установить отдельные массы в двойной звездной системе. Процесс легче понять, когда видны обе звезды, и отличным примером в данном случае станет двойная система Сириус А + Сириус B, в которой яркая звезда класса А, занявшая главную последовательность (Сириус А), и ее гораздо более тусклый спутник, белый карлик (Сириус В), медленно вращаются вокруг своего общего центра масс.
Сириус B был открыт в 1862 году, и с тех пор наблюдения показали, что две звезды движутся по эллиптическим орбитам с общим периодом в 50,1 года. Сириус А имеет меньшую орбиту, что соответствует его большей массе. Угловой диаметр большой полуоси орбиты Сириуса B — по отношению к Сириусу А — составляет 7,5″, что при ее протяженности в 8,6 светового года дает среднее расстояние в 20 а. е. Используя обобщенную версию третьего закона Кеплера, где
По сравнению с системой Сириуса большинство двойных звездных систем далеко не так доброжелательны к астрономам. Они либо слишком далеки, либо слишком тесно связаны, чтобы различить их как отдельные. В таких случаях, а их довольно много, астрономы должны тщательно собрать всю прочую информацию, которая может им пригодиться для определения звездных масс. Наиболее полезными в данном случае оказались те двойные звезды, орбиты которых сильно наклонены к лучу нашего зрения. С нашей точки наблюдения общий блеск звездной системы будет периодически снижаться по мере того, как одна звезда затмевает другую. Отслеживая эти спады в течение продолжительного времени, астрономы могут определить и взаимный орбитальный период звезд, и то, насколько их орбиты совпадают с нашим лучом зрения. Если совпадение идеально, значит, движение звезд по направлению к нам и от нас в точности соответствует их орбитальным скоростям. Движение по лучу зрения, в свою очередь, можно определить по наблюдаемым доплеровским смещениям, заметным в изменениях длин волн на соответствующих спектральных линиях звезд. Учитывая эти особые обстоятельства, можно определить соотношение звездных масс в таком виде: