Читаем Гайд по астрономии. Путешествие к границам безграничного космоса полностью

Сумев пронаблюдать присутствие молекулярных ядер, протопла- нетных дисков и зрелых планетных систем, к которым относится и наша, астрофизики добились значительных успехов в описании процесса образования звезд. Многим мы обязаны Пьеру-Симону Лапласу, который еще в конце XVIII столетия первым выдвинул небулярную гипотезу, призванную объяснить, как возникла Солнечная система. Он учел, что на облако (или на туманность) воздействует его собственное тяготение, сделал поправку на некоторое общее вращение и понял, что сплющивание облака будет проходить преимущественно вдоль его оси вращения. Вдоль экватора вещество сжалось бы не так сильно, поскольку сила тяжести, направленная внутрь, по большей части пошла бы на то, чтобы ограничить его вращательное движение. Этот гравитационный коллапс, имевший предпочтительное направление, сам собой привел бы к появлению центральной области, в которой концентрация вещества была бы максимальной, и плоского диска с его остатками, из которых в конечном итоге возникли бы звезда-хозяйка и группа планет, идущих вокруг нее по орбитам в одном и том же направлении (рис. 11.2).

Рис. 11.2. Упрощенное изображение вращающегося облака, которое под действием собственной гравитации коллапсирует в центральную массу и окружающий ее диск, в том виде, в котором его впервые в конце XVIII века описал Пьер-Симон Лаплас. Вращение облака уменьшает ускорение свободного падения на его экваторе, в результате чего образуется сплюснутый диск. Центральная масса со временем станет самосветящейся звездой, а диск распадется на планеты.

Со времен Лапласа астрономы пытались решить множество проблем, связанных с этой гипотезой. Одна из главных загадок заключается в том, как именно молекулярное ядро, которому приходится претерпевать сгущение, вращение и сжатие, справляется со своим начальным угловым моментом (вращающейся массой). Поскольку большая часть вещества под действием гравитации направляется к центральной протозвезде, последняя должна обладать наибольшим угловым моментом в системе. И поскольку она коллапсирует на много порядков величины, то должна раскручиваться до невероятных скоростей, чтобы сохранить свой изначальный угловой момент. Мы уже упоминали, что именно для этого фигуристка во время вращения прижимает руки к груди; можно еще привести пример с ныряльщицей, которая группируется во время прыжка в воду. Впрочем, в коллапсирующих ядрах такой вращательной динамики мы не увидим. Взгляните на Солнце. Оно содержит более 99 % массы Солнечной системы и все же вращается довольно спокойно, делая один оборот вокруг своей оси за двадцать семь дней. Следовательно, бол́ьшая часть оставшегося углового момента Солнечной системы сосредоточена на орбитах планет-гигантов, особенно Юпитера. Куда же исчез остальной угловой момент изначальной Солнечной системы?

Одно из возможных решений этой проблемы — избавиться от значительной доли массы исходного диска, вращающейся и движущейся под действием гравитации. Иными словами, в формирующейся Солнечной системе должен был появиться сильный отток от диска. Это помогло бы объяснить и биполярные истечения, которые наблюдались у многих протозвезд.


Рис. 11.3. Этапы рождения звезды (слева направо). Сперва возникает ядро молекулярного облака, затем под действием гравитации к нему поступает газ, из которого образуются протозвезда и аккреционный диск. В дальнейшем от протозвезды отходит биполярное истечение, вследствие чего из протопланетного диска удаляется вещество и остается звезда с обращающимися вокруг нее планетами — такой вид характерен для «зрелых» планетных систем, в том числе и для нашей. (Материалы любезно предоставлены: Charles Lada [Гарвард-Смитсоновский центр астрофизики], Rob Wood [иллюстратор].)

С учетом противоречивой динамики, участие в которой принимают и гравитация, и вращение, и магнитные поля, и излучения, и другие воздействия, рассказ о формировании звездных и планетных систем из туманного вещества может оказаться немного сложным. На рис. 11.3 изображены ключевые этапы рождения, которые, как полагают, сменяют друг друга в ходе метаморфоз.

Считается, что полное превращение из протозвезды, которую можно распознать, в звезду, подобную Солнцу, занимает всего 30 млн лет. Звезда массой в 40 M (такая дает энергию туманности Ориона) сформировалась бы всего за 100 000 лет, что приблизительно эквивалентно возрасту человечества, в то время как образование звезды с массой 0,1 M (скажем, такой, как Проксима Центавра, карлик класса М — вторая из ближайших к нам) заняло бы до миллиарда лет. Как мы еще увидим, и жизнь, и гибель звезд в решающей степени зависят от их первоначальной массы.

12. Циклы жизни и гибели звезд

Все-таки они не просто красивы — звезды подобны деревьям в лесу, они живут и дышат.

И они наблюдают за мной.

Харуки Мураками. Кафка на пляже


Перейти на страницу:

Похожие книги

Повседневная жизнь российских космонавтов
Повседневная жизнь российских космонавтов

Книга, представленная на суд читателя в год пятидесятилетнего юбилея первого полета человека в космос, совершенного Ю. А. Гагариным, — не взгляд со стороны. Ее автор — удивительно разносторонний человек. Герой Российской Федерации, летчик-космонавт Ю. М. Батурин хорошо известен также как ученый и журналист. Но главное — он сам прекрасно знает увлекательный и героический мир, о котором пишет, жил в нем с середины 1990-х годов до 2009 года.Книга, рассчитанная на широкий круг читателей, не только познавательна. Она поднимает острые вопросы, от решения которых зависит дальнейшая судьба отечественной космонавтики. Есть ли еще у России шансы преодолеть ухабы на пути к звездам или все лучшее осталось в прошлом? Прочитав книгу, вы сами сможете судить об этом.Большинство цветных фотографий сделано автором в ходе тренировок и в космических полетах.

Юрий Михайлович Батурин

Астрономия и Космос / История / Образование и наука