Теперь стоит сказать, что в звездах, подобных Солнцу, внутренний излучающий слой отделен от внешнего конвективного слоя, и из-за этого ядро, в котором совершаются термоядерные реакции, не имеет доступа ко всему водороду звезды. В конце концов в нем закончится топливо, оно перейдет в бездействующее состояние, и произойдет его гравитационный коллапс, отчего водород начнет сгорать в оболочке, расположенной непосредственно за пределами сжатого ядра. Такое горение характерно для стадии красного гиганта, во время которой звезда расширяет внешние слои до тех пор, пока не увеличится в 100 раз. Менее чем через 1,2 млрд лет после того, как звезда уйдет с главной последовательности, плотность и температура в ее сжимающемся ядре станут достаточно высокими для того, чтобы содержащийся в нем гелий переплавился в углерод и кислород. В ходе этих термоядерных реакций энергия высвобождается значительно слабее, и скорость их протекания должна увеличиться, иначе случится коллапс. В это время звезда находится на стадии горизонтальной ветви (рис. 12.2), которая продлится всего около 100 млн лет.
Исчерпав запасы гелиевого «топлива», ядро снова станет сжиматься до тех пор, пока гелий не начнет синтезироваться в оболочке, окружающей ядро. Эту оболочку, в свою очередь, окружит другая, в которой будет происходить ядерное горение водорода. Светимость звезды будет постоянно возрастать, и она вступит в стадию асимптотической ветви гигантов (рис. 12.2). В этот момент размер звезды, возможно, сравняется с протяженностью орбиты Марса, а внешние слои звездной атмосферы станут достаточно прохладными, благодаря чему некоторые газы, присутствующие в них, смогут кристаллизоваться в микроскопические пылинки, а атомы углерода, кремния и кислорода, некогда свободные, осядут в виде крупиц силиката и графита величиной с частички сажи. В дальнейшем наличие двух оболочек, в которых проходит термоядерный синтез, приведет к нестабильности, нестабильность вызовет пульсации, эти пульсации породят сильные ветры, а ветры вытолкнут пылинки прочь и наполнят межзвездную среду достаточным количеством пыли, чтобы из нее образовались планетезимали и, в конечном итоге, планеты. Так что и наша родная Земля, и другие каменистые планеты обязаны своим происхождением могучим ветрам некогда гигантских звезд!
У звезды, подобной Солнцу, стадия асимптотической ветви гигантов длится всего 20 млн лет. В течение этого краткого периода мощные звездные ветры будут удалять все больше и больше массы, обнажая остатки углеродно-кислородного ядра. А само ядро будет сжиматься до тех пор, пока не превратится в белого карлика, способного противостоять своей сокрушительной самогравитации за счет сил отталкивания между его электронами (подробнее об этом в гл. 13). Поскольку поверхность углеродно-кислородного белого карлика необычайно горяча — от 30 000 до 100 000 К, — она обильно излучает в ультрафиолетовом диапазоне, а излучение ионизирует газы, переносимые ветрами, и заставляет их флуоресцировать. Так возникает планетарная туманность, чья изящная форма и цветовая палитра продержатся всего мгновение — 10 000 лет, — прежде чем рассеяться в космосе. И теперь, когда уже ничто не повлияет на статическое равновесие плотного остатка звезды, белый карлик будет медленно охлаждаться за счет теплопроводности и излучения на протяжении миллиардов лет (рис. 12.3).
Рис. 12.3.
Пути эволюции звезд и их зависимость от изначальной массы. Звезды средней массы становятся белыми карликами, а массивные звезды — либо нейтронными звездами, либо черными дырами. (Приводится с изменениями по источнику:Другие звезды средней массы
Звезды, которые значительно тяжелее Солнца (1,4–8
Массивные звезды