Для запуска процесса излучения крайне низкоэнергетических линий окиси углерода требуется плотность газа в несколько сотен частиц на кубический сантиметр и температура на несколько десятков градусов выше абсолютного нуля. В данном контексте газ, который производит эту эмиссию, указывает на объемный резервуар молекулярного топлива. В отличие от линий излучения ионизированного газа, о которых я говорил ранее, рассуждая о видимой части спектра, длина волны излучения окиси углерода составляет около 1 мм между дальним инфракрасным и радиоучастком спектра, поэтому его нельзя наблюдать при помощи обычного оптического телескопа. Вместо этого мы обратимся к радиотелескопам (или, точнее, телескопам, работающим на миллиметровых волнах), оснащенным подходящими детекторами, которые могут обнаруживать фотоны этой длины волны. Обнаружив эмиссию оксида углерода, мы можем измерить общее количество света и преобразовать его в светимость окиси углерода (предполагается, что у нас уже есть некоторое понимание того, как далеко находится излучающий газ). Поскольку газ, выделяющий окись углерода, смешивается с молекулярным водородом таким образом, что чем больше водорода, тем больше окиси углерода, мы можем преобразовать наблюдаемую светимость окиси углерода в массу молекулярного водорода. А это уже, в свою очередь, позволит нам определить, сколько газа доступно для звездообразования в газовом молекулярном облаке или даже в целой галактике.
Традиционно задача наблюдения за галактиками, находящимися далеко за пределами нашей Местной группы, была довольно сложной: технологий, необходимых для обнаружения слабых выбросов окиси углерода в очень далеких галактиках (кроме самых экстремальных ярких галактик, таких как квазары), попросту не было. Однако ситуация меняется прямо у нас на глазах в результате разработки нового телескопа, или, точнее, комплекса телескопов «Атакамская большая [антенная] решетка миллиметрового диапазона» (англ.
Мы говорили о молекулярном газе – строительном материале звезд, – но важно также рассмотреть и другой основной газообразный компонент галактик – нейтральный (то есть не электрически заряженный) атомарный водород HI, который предшествует молекулярной фазе. Этот газ состоит из отдельных атомов водорода, а не его молекул. В отличие от молекулярного водорода атомный компонент более рассеянный и не ограничен плотными компактными облаками, захваченными в диске. Атомарный водород невероятно полезен в качестве индикатора внешних краев дисковых галактик, где плотность – и, следовательно, яркость – звезд начинает уменьшаться. Атомарный водород легко обнаружить, потому что это сильный излучатель радиоволн. Заметьте, что это не какой-то старый вид радиоволн – в остальном диапазоне газ излучает свет с частотой точно 1,4 ГГц, что эквивалентно длине волны 21 см. Как и эмиссия окиси углерода газомолекулярными облаками и те линии эмиссии ионизированного газа вокруг областей звездообразования, эмиссия атомарного водорода с длиной волны в 21 см также является линией эмиссии. Однако теперь физика излучения немного отличается. Это требует объяснения, потому что хорошо иллюстрирует две важные вещи: первая – смехотворность чисел, которыми оперируют в астрофизике, и вторая – еще одна хорошая связь между ней и квантовой механикой.
Комплекс ALMA и Магеллановы Облака, которые выглядят на небе как два расплывчатых пятна света. Магеллановы Облака – это две карликовые галактики – спутники Млечного Пути. У большинства крупных галактик есть подобные спутники; прогнозирование их количества и распределения – одна из актуальных проблем при создании моделей формирования галактик